Publications by authors named "Carol Marimpietri"

Background: Zanubrutinib is a next-generation, selective Bruton tyrosine kinase inhibitor with efficacy in relapsed chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). We compared zanubrutinib with bendamustine-rituximab to determine its effectiveness as frontline therapy in patients with CLL or SLL.

Methods: We conducted an open-label, multicentre, phase 3 study at 153 academic or community hospitals in 14 countries and regions.

View Article and Find Full Text PDF

Ibrutinib, a first-in-class, once-daily inhibitor of Bruton's tyrosine kinase (BTK), is approved in the US and EU for the treatment of various B-cell malignancies. In clinical studies, BTK inhibitors have been associated with increased bleeding risk, which may result from BTK inhibition in platelets. To better understand the mechanism of ibrutinib in bleeding events, we isolated platelet-rich plasma from healthy donors ( = 8) and donors with conditions associated with impaired platelet function or with potentially increased bleeding risk (on hemodialysis, taking aspirin, or taking warfarin;  = 8 each cohort) and used light transmission aggregometry to assess platelet aggregation in vitro after exposure to escalating concentrations of ibrutinib, spanning and exceeding the pharmacologic range of clinical exposure.

View Article and Find Full Text PDF

Single-cell network profiling (SCNP) data generated from multi-parametric flow cytometry analysis of bone marrow (BM) and peripheral blood (PB) samples collected from patients >55 years old with non-M3 AML were used to train and validate a diagnostic classifier (DXSCNP) for predicting response to standard induction chemotherapy (complete response [CR] or CR with incomplete hematologic recovery [CRi] versus resistant disease [RD]). SCNP-evaluable patients from four SWOG AML trials were randomized between Training (N = 74 patients with CR, CRi or RD; BM set = 43; PB set = 57) and Validation Analysis Sets (N = 71; BM set = 42, PB set = 53). Cell survival, differentiation, and apoptosis pathway signaling were used as potential inputs for DXSCNP.

View Article and Find Full Text PDF

The aim of this study was to assess the feasibility of applying the single cell network profiling (SCNP) assay to the examination of signaling networks in epithelial cancer cells, using bladder washings from 29 bladder cancer (BC) and 15 nonbladder cancer (NC) subjects. This report describes the methods we developed to detect rare epithelial cells (within the cells we collected from bladder washings), distinguish cancer cells from normal epithelial cells, and reproducibly quantify signaling within these low frequency cancer cells. Specifically, antibodies against CD45, cytokeratin, EpCAM, and cleaved-PARP (cPARP) were used to differentiate nonapoptotic epithelial cells from leukocytes, while measurements of DNA content to determine aneuploidy (DAPI stain) allowed for distinction between tumor and normal epithelial cells.

View Article and Find Full Text PDF