Publications by authors named "Carol Lyon"

In vertebrates, the nuclear envelope (NE) assembles and disassembles during mitosis. As the NE is a complex structure consisting of inner and outer membranes, nuclear pore complexes (NPCs) and the nuclear lamina, NE assembly must be a controlled and systematic process. In Xenopus egg extracts, NE assembly is mediated by two distinct membrane vesicle populations, termed NEP-A and NEP-B.

View Article and Find Full Text PDF

The nucleolus is a key organelle that coordinates the synthesis and assembly of ribosomal subunits and forms in the nucleus around the repeated ribosomal gene clusters. Because the production of ribosomes is a major metabolic activity, the function of the nucleolus is tightly linked to cell growth and proliferation, and recent data suggest that the nucleolus also plays an important role in cell-cycle regulation, senescence and stress responses. Here, using mass-spectrometry-based organellar proteomics and stable isotope labelling, we perform a quantitative analysis of the proteome of human nucleoli.

View Article and Find Full Text PDF

One of the great mysteries of the nucleolus surrounds its disappearance during mitosis and subsequent reassembly at late mitosis. Here, the relative dynamics of nucleolar disassembly and reformation were dissected using quantitative 4D microscopy with fluorescent protein-tagged proteins in human stable cell lines. The data provide a novel insight into the fates of the three distinct nucleolar subcompartments and their associated protein machineries in a single dividing cell.

View Article and Find Full Text PDF

Protein phosphatase 1 (PP1) is a ubiquitous serine/threonine phosphatase that regulates many cellular processes, including cell division. When transiently expressed as fluorescent protein (FP) fusions, the three PP1 isoforms, alpha, beta/delta, and gamma1, are active phosphatases with distinct localization patterns. We report here the establishment and characterization of HeLa cell lines stably expressing either FP-PP1gamma or FP alone.

View Article and Find Full Text PDF

The Cajal body (CB) is a conserved, dynamic nuclear structure that is implicated in various cellular processes, such as the maturation of splicing small nuclear ribonucleoproteins and the assembly of transcription complexes. Here, we report the first procedure for the large-scale purification of CBs from HeLa cell nuclei, resulting in an approximately 750-fold enrichment of the CB marker protein p80-coilin. Immunofluorescence, immunoblotting, and mass spectrometric analyses showed that the composition of the isolated CBs was similar to that of CBs in situ.

View Article and Find Full Text PDF

Background: The cell nucleus contains distinct classes of subnuclear bodies, including nucleoli, splicing speckles, Cajal bodies, gems, and PML bodies. Many nuclear proteins are known to interact dynamically with one or other of these bodies, and disruption of the specific organization of nuclear proteins can result in defects in cell functions and may cause molecular disease.

Results: A proteomic study of purified human nucleoli has identified novel proteins, including Paraspeckle Protein 1 (PSP1) (see accompanying article, this issue of Current Biology).

View Article and Find Full Text PDF

Background: The nucleolus is a subnuclear organelle containing the ribosomal RNA gene clusters and ribosome biogenesis factors. Recent studies suggest it may also have roles in RNA transport, RNA modification, and cell cycle regulation. Despite over 150 years of research into nucleoli, many aspects of their structure and function remain uncharacterized.

View Article and Find Full Text PDF