Publications by authors named "Carol Lyn Piazza"

Lyme disease is a tick-borne, multisystem infection caused by the spirochete Borreliella burgdorferi. Although Abs have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG (B11) against outer surface protein C (OspC), a homodimeric lipoprotein necessary for B.

View Article and Find Full Text PDF

Lyme disease is a tick-borne, multisystem infection caused by the spirochete, . Although antibodies have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG ("B11") against Outer surface protein C (OspC), a homodimeric lipoprotein necessary for tick-mediated transmission and early-stage colonization of vertebrate hosts.

View Article and Find Full Text PDF
Article Synopsis
  • Camelid-derived single-domain antibodies (VHs) are effective in studying diverse surface proteins' antigenic properties, specifically in Lyme disease research.
  • Two alpacas were immunized to create a phage-displayed VH library against an important Lyme vaccine antigen, outer surface protein A (OspA), leading to the identification of 21 unique VHs.
  • The study highlights that these VHs exhibit different reactivities across various OspA serotypes, indicating the need for considering unique epitopes when developing multivalent Lyme disease vaccines.
View Article and Find Full Text PDF

319-44 is a human monoclonal antibody capable of passively protecting mice against tick-mediated infection with Borreliella burgdorferi, the bacterial genospecies responsible for Lyme disease in North America. In vitro, 319-44 has complement-dependent borreliacidal activity and spirochete agglutinating properties. Here, we report the 2.

View Article and Find Full Text PDF

Outer surface protein C (OspC) plays a pivotal role in mediating tick-to-host transmission and infectivity of the Lyme disease spirochete, Borreliella burgdorferi. OspC is a helical-rich homodimer that interacts with tick salivary proteins, as well as components of the mammalian immune system. Several decades ago, it was shown that the OspC-specific monoclonal antibody, B5, was able to passively protect mice from experimental tick-transmitted infection by B.

View Article and Find Full Text PDF

Background: Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition.

View Article and Find Full Text PDF

Group II introns are self-splicing ribozymes and mobile genetic elements. Splicing is required for both expression of the interrupted host gene and intron retromobility. For the pRS01 plasmid-encoded Lactococcus lactis group II intron, Ll.

View Article and Find Full Text PDF

Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.

View Article and Find Full Text PDF

Group II introns, the putative progenitors of spliceosomal introns and retrotransposons, are ribozymes that are capable of self-splicing and DNA invasion. In the cell, group II introns form ribonucleoprotein (RNP) complexes with an intron-encoded protein, which is essential to folding, splicing and retromobility of the intron. To understand the structural accommodations underlying splicing, in preparation for retromobility, we probed the endogenously expressed Lactococcus lactis Ll.

View Article and Find Full Text PDF

Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target.

View Article and Find Full Text PDF

Inteins are mobile genetic elements that self-splice at the protein level. Mycobacteria have inteins inserted into several important genes, including those corresponding to the iron-sulfur cluster assembly protein SufB. Curiously, the SufB inteins are found primarily in mycobacterial species that are potential human pathogens.

View Article and Find Full Text PDF

Group II introns are commonly believed to be the progenitors of spliceosomal introns, but they are notably absent from nuclear genomes. Barriers to group II intron function in nuclear genomes therefore beg examination. A previous study showed that nuclear expression of a group II intron in yeast results in nonsense-mediated decay and translational repression of mRNA, and that these roadblocks to expression are group II intron-specific.

View Article and Find Full Text PDF

The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo.

View Article and Find Full Text PDF

Group II introns are hypothesized to share common ancestry with both nuclear spliceosomal introns and retrotransposons, which collectively occupy the majority of genome space in higher eukaryotes. These phylogenetically diverse introns are mobile retroelements that move through an RNA intermediate. Disruption of Escherichia coli genes encoding enzymes that catalyze synthesis of global regulators cAMP and ppGpp inhibits group II intron retromobility.

View Article and Find Full Text PDF

Group II introns are mobile retroelements that invade their hosts. The Lactococcus lactis group II intron recruits cellular polymerases, nucleases, and DNA ligase to complete the retromobility process in Escherichia coli. Here we describe a genetic screen with a Tn5 transposon library to identify other E.

View Article and Find Full Text PDF

Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.

View Article and Find Full Text PDF

Group II introns are mobile retroelements that invade their cognate intron-minus gene in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. Previous studies of the Lactococcus lactis intron Ll.

View Article and Find Full Text PDF