Publications by authors named "Carol Lutz"

Long noncoding RNAs (lncRNAs) have emerged as critical regulators in numerous biological processes. The arachidonic acid (AA) metabolic pathway is a fundamental biochemical pathway responsible for the enzymatic conversion of AA, a 20-carbon omega-six polyunsaturated fatty acid, into a variety of potent lipid signaling molecules known as eicosanoids. Eicosanoids are produced through the cyclooxygenase and lipoxygenase arms of the AA pathway and have diverse biological roles in both healthy and disease states, including cancer and inflammatory diseases.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are known to regulate gene expression; however, in many cases, the mechanism of this regulation is unknown. One novel lncRNA relevant to inflammation and arachidonic acid (AA) metabolism is the p50-associated COX-2 extragenic RNA (PACER). We focused our research on the regulation of PACER in lung cancer.

View Article and Find Full Text PDF

Two pathways commonly dysregulated in autoimmune diseases and cancer are tumor necrosis factor alpha (TNF) and interleukin 1 beta (IL-1) signaling. Researchers have also shown that both signaling cascades positively regulate arachidonic acid (AA) signaling. More specifically, TNF/IL-1 promotes expression of the prostaglandin E2- (PGE-) producing enzymes, cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1).

View Article and Find Full Text PDF

Lung cancer is a collection of aggressive tumors generally not diagnosed until late-stage, resulting in high mortality rates. The vast majority of non-small cell lung cancer (NSCLC) patients undergo combinatory chemotherapeutic treatment, which initially reduces tumor growth, but frequently becomes ineffective due to toxicity and resistance. Researchers have identified multiple signaling pathways involved in lung cancer chemoresistance, including cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1) derived prostaglandin E2 (PGE).

View Article and Find Full Text PDF

Many cancers maintain an inflammatory microenvironment to promote their growth. Lung cancer is of particular importance, as it is the deadliest cancer worldwide. One inflammatory pathway commonly dysregulated in cancer is the metabolism of arachidonic acid (AA) by Cyclooxygenase-2 (COX-2) and microsomal Prostaglandin E Synthase 1 (mPGES-1) into Prostaglandin E2 (PGE).

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is a complex disease in need of new methods of therapeutic intervention. Recent interest has focused on using microRNAs (miRNAs) as a novel treatment method for various cancers. miRNAs negatively regulate gene expression post-transcriptionally, and have become attractive candidates for cancer treatment because they often simultaneously target multiple genes of similar biological function.

View Article and Find Full Text PDF

Elevated prostaglandin E (PGE) levels are observed in colorectal cancer (CRC) patients, and this increase is associated with poor prognosis. Increased synthesis of PGE in CRC has been shown to occur through COX-2-dependent mechanisms; however, loss of the PGE-catabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH, HPGD), in colonic tumors contributes to increased prostaglandin levels and poor patient survival. While loss of 15-PGDH can occur through transcriptional mechanisms, we demonstrate that 15-PGDH can be additionally regulated by a miRNA-mediated mechanism.

View Article and Find Full Text PDF

Cancer as we know it is actually an umbrella term for over 100 very unique malignancies in various tissues throughout the human body. Each type, and even subtype of cancer, has different genetic, epigenetic, and other cellular events responsible for malignant development and metastasis. Recent work has indicated that microRNAs (miRNAs) play a major role in these processes, sometimes by promoting cancer growth and other times by suppressing tumorigenesis.

View Article and Find Full Text PDF

Epigenetic modulators, including histone methylases, demethylases, and deacetylases, have been implicated previously in the regulation of classical and alternative macrophage activation pathways. In this study, we show that the histone acetyl transferase (HAT) Kat6B (MYST4) is strongly suppressed (>80%) in macrophages by lipopolysaccharide (LPS) (M1 activation), while Kat6A, its partner in the MOZ/MORF complex, is reciprocally upregulated. This pattern of expression is not altered by LPS together with the adenosine receptor agonist NECA (M2d activation).

View Article and Find Full Text PDF

Arachidonic acid (AA) can be converted into prostaglandins (PGs) or leukotrienes (LTs) by the enzymatic actions of cyclooxygenases (COX-1 and COX-2) or 5-lipoxygenase (5-LO), respectively. PGs and LTs are lipid signaling molecules that have been implicated in various diseases, including multiple cancers. 5-LO and its activating protein (FLAP) work together in the first two conversion steps of LT production.

View Article and Find Full Text PDF

Doctoral students in science disciplines spend countless hours learning how to conduct cutting-edge research but very little time learning to communicate the nature and significance of their science to people outside their field. To narrow this disparity, we created an unusual course titled Communicating Science for doctoral science trainees at Rutgers University. Our goal was to help students develop an advanced ability to communicate their research clearly and accurately and to emphasize its value and significance to diverse audiences.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression post-transcriptionally. They are crucial for normal development and maintaining homeostasis. Researchers have discovered that dysregulated miRNA expression contributes to many pathological conditions, including cancer.

View Article and Find Full Text PDF

We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes.

View Article and Find Full Text PDF

New Zealand Black (NZB) mice, a de novo model of CLL, share multiple characteristics with CLL patients, including decreased expression of miR-15a/16-1. We previously discovered a point mutation and deletion in the 3' flanking region of mir-16-1 of NZB and a similar mutation has been found in a small number of CLL patients. However, it was unknown whether the mutation is the cause for the reduced miR-15a/16-1 expression and CLL development.

View Article and Find Full Text PDF

PTB-associated splicing factor (PSF) is an abundant and essential nucleic acid-binding protein that participates in a wide range of gene regulatory processes and cellular response pathways. At the protein level, PSF consists of multiple domains, many of which remain poorly characterized. Although grouped in a family with the proteins p54nrb/NONO and PSPC1 based on sequence homology, PSF contains additional protein sequence not included in other family members.

View Article and Find Full Text PDF

Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines.

View Article and Find Full Text PDF

3' end formation of eukaryotic messenger RNAs (mRNAs) is an essential process that influences mRNA stability, turnover, and translation. Polyadenylation is the process by which mRNAs are cleaved at specific sites in response to specific RNA sequence elements and binding of trans-acting protein factors; these cleaved mRNAs subsequently acquire non-templated poly(A) tails at their 3' ends. Alternative polyadenylation occurs when multiple poly(A) signals are present in the primary mRNA transcript, in either the 3' untranslated region (3'UTR) or other sites within the mRNA, resulting in multiple transcript variants of different lengths.

View Article and Find Full Text PDF

Arachidonic acid (AA) is converted by enzymes in an important metabolic pathway to produce molecules known collectively as eicosanoids, 20 carbon molecules with significant physiological and pathological functions in the human body. Cyclooxygenase (COX) enzymes work in one arm of the pathway to produce prostaglandins (PGs) and thromboxanes (TXs), while the actions of 5-lipoxygenase (ALOX5 or 5LO) and its associated protein (ALOX5AP or FLAP) work in the other arm of the metabolic pathway to produce leukotrienes (LTs). The expression of the COX and ALOX5 enzymes that convert AA to eicosanoids is highly regulated at the post- or co-transcriptional level by alternative mRNA splicing, alternative mRNA polyadenylation, mRNA stability, and microRNA (miRNA) regulation.

View Article and Find Full Text PDF

Polyadenylation is a 3' mRNA processing event that contributes to gene expression by affecting stability, export and translation of mRNA. Human polyadenylation signals (PAS) have core and auxiliary elements that bind polyadenylation factors upstream and downstream of the cleavage site. The majority of mRNAs do not have optimal upstream and downstream core elements and therefore auxiliary elements can aid in polyadenylation efficiency.

View Article and Find Full Text PDF

Almost all eukaryotic mRNAs possess 3' ends with a polyadenylate (poly(A)) tail. This poly(A) tail is not encoded in the genome but is added by the process of polyadenylation. Polyadenylation is a two-step process, and this process is accomplished by multisubunit protein factors.

View Article and Find Full Text PDF

Alternative RNA processing mechanisms, including alternative splicing and alternative polyadenylation, are increasingly recognized as important regulators of gene expression. This article will focus on what has recently been described about alternative polyadenylation in development, differentiation, and disease in higher eukaryotes. We will also describe how the evolving global methodologies for examining the cellular transcriptome, both experimental and bioinformatic, are revealing new details about the complex nature of alternative 3(') end formation as well as interactions with other RNA-mediated and RNA processing mechanisms.

View Article and Find Full Text PDF

The flavivirus NS5 protein is one of the most important proteins of the replication complex, and cellular proteins can interact with it. This study shows for the first time that the yellow fever virus (YFV) NS5 protein is able to interact with U1A, a protein involved in splicing and polyadenylation. We confirmed this interaction by GST-pulldown assay and by co-immunoprecipitation in YFV-infected cells.

View Article and Find Full Text PDF

Alternative RNA processing mechanisms, including alternative splicing and alternative polyadenylation, are increasingly recognized as important regulators of gene expression. This article will focus on what has recently been described about alternative polyadenylation in development, differentiation, and disease in higher eukaryotes. We will also describe how the evolving global methodologies for examining the cellular transcriptome, both experimental and bioinformatic, are revealing new details about the complex nature of alternative 3' end formation, as well as interactions with other RNA-mediated and RNA processing mechanisms.

View Article and Find Full Text PDF

The human MeCP2 gene encodes a ubiquitously expressed methyl CpG binding protein. Mutations in this gene cause a neurodevelopmental disorder called Rett Syndrome (RS). Mutations identified in the coding region of MeCP2 account for approximately 65% of all RS cases.

View Article and Find Full Text PDF

Regulation of gene expression by RNA processing mechanisms is now understood to be an important level of control in mammalian cells. Regulation at the level of RNA transcription, splicing, polyadenylation, nucleo-cytoplasmic transport, and translation into polypeptides has been well-studied. Alternative RNA processing events, such as alternative splicing, also have been recognized as key contributors to the complexity of mammalian gene expression.

View Article and Find Full Text PDF