Publications by authors named "Carol L Nilsson"

Unraveling disease mechanisms requires a comprehensive understanding of how the interplay between higher-order structure and protein-ligand interactions impacts the function of a given protein. Recent advances in native mass spectrometry (MS) involving multimodal or higher-energy activation methods have allowed direct interrogation of intact protein complexes in the gas phase, allowing analysis of both composition and subunit connectivity. We report a multistage approach combining collisional activation and 193 nm ultraviolet photodissociation (UVPD) to characterize single amino acid variants of the human mitochondrial enzyme branched-chain amino acid transferase 2 (BCAT2), a protein implicated in chemotherapeutic resistance in glioblastoma tumors.

View Article and Find Full Text PDF

The structural study of glycans and glycoconjugates is essential to assign their roles in homeostasis, health, and disease. Once dominated by nuclear magnetic resonance spectroscopy, mass spectrometric methods have become the preferred toolbox for the determination of glycan structures at high sensitivity. The patterns of such structures in different cellular states now allow us to interpret the sugar codes in health and disease, based on structure-function relationships.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant of primary brain tumors, is a devastating and deadly disease, with a median survival of 14 months from diagnosis, despite standard regimens of radical brain tumor surgery, maximal safe radiation, and concomitant chemotherapy. GBM tumors nearly always re-emerge after initial treatment and frequently display resistance to current treatments. One theory that may explain GBM re-emergence is the existence of glioma stemlike cells (GSCs).

View Article and Find Full Text PDF

Structural technologies are an essential component in the design of precision therapeutics. Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right patient at the right time. In the field of oncology, protein structural variants are often associated with oncogenic potential.

View Article and Find Full Text PDF

Primary brain tumors are predominantly malignant gliomas. Grade IV astrocytomas (glioblastomas, GBM) are among the most deadly of all tumors; most patients will succumb to their disease within 2 years of diagnosis despite standard of care. The grim outlook for brain tumor patients indicates that novel precision therapeutic targets must be identified.

View Article and Find Full Text PDF

Chemotherapeutics are vital for treating brain tumors such as glioblastoma, an aggressive and prolific cancer predominantly treated with DNA alkylating agents. The efficacy of antiglioblastoma drugs, such as temozolomide, is limited by their rapid clearance and instability under normal physiological conditions. Both local and systemic polymer-based therapeutics have shown promise for treating many cancers, and as such there is a growing interest in applying polymer techniques to augment the efficacy and stability of glioblastoma chemotherapeutics.

View Article and Find Full Text PDF

Background: Depression affects over 120 million individuals of all ages and is the leading cause of disability worldwide. The lack of objective diagnostic criteria, together with the heterogeneity of the depressive disorder itself, makes it challenging to develop effective therapies. The accumulation of preclinical data over the past 20 years derived from a multitude of models using many divergent approaches, has fueled the resurgence of interest in targeting glutamatergic neurotransmission for the treatment of major depression.

View Article and Find Full Text PDF

Recent data shows that fibroblast growth factor 14 (FGF14) binds to and controls the function of the voltage-gated sodium (Nav) channel with phenotypic outcomes on neuronal excitability. Mutations in the FGF14 gene in humans have been associated with brain disorders that are partially recapitulated in Fgf14(-/-) mice. Thus, signaling pathways that modulate the FGF14:Nav channel interaction may be important therapeutic targets.

View Article and Find Full Text PDF

Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal-epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer.

Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored.

View Article and Find Full Text PDF

Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) have the innate ability to migrate or home toward and engraft in tumors such as glioblastoma (GBM). Because of this unique property of BM-hMSCs, we have explored their use for cell-mediated therapeutic delivery for the advancement of GBM treatment. Extravasation, the process by which blood-borne cells—such as BM-hMSCs—enter the tissue, is a highly complex process but is heavily dependent upon glycosylation for glycan-glycan and glycan-protein adhesion between the cell and endothelium.

View Article and Find Full Text PDF
Article Synopsis
  • About 18% of human genes thought to encode proteins lack direct evidence at the protein level, thus being classified as "missing" proteins.
  • The Chromosome-Centric Human Proteome Project (C-HPP) aims to identify these missing proteins using advanced techniques like mass spectrometry.
  • A collaboration among C-HPP teams has led to the development of a cell-free in vitro transcription/translation system (IVTT) combined with mass spectrometry methods to successfully identify 18 previously missing proteins.
View Article and Find Full Text PDF

Erratum to: Cancer and Metastasis Review, DOI 10.1007/s10555-015-9556-2. There are changes in authors' affiliations and a new affiliations for Carol L.

View Article and Find Full Text PDF

This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of the key approaches and their roles in the project.

View Article and Find Full Text PDF

The Chromosome 19 Consortium, a part of the Chromosome-Centric Human Proteome Project (C-HPP, http://www.C-HPP.org ), is tasked with the understanding chromosome 19 functions at the gene and protein levels, as well as their roles in lung oncogenesis.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common adult primary brain tumor. Despite aggressive multimodal therapy, the survival of patients with GBM remains dismal. However, recent evidence has demonstrated the promise of bone marrow-derived mesenchymal stem cells (BM-hMSCs) as a therapeutic delivery vehicle for anti-glioma agents due to their ability to migrate or home to human gliomas.

View Article and Find Full Text PDF

Voltage-gated sodium channels (Nav1.1-Nav1.9) are responsible for the initiation and propagation of action potentials in neurons, controlling firing patterns, synaptic transmission and plasticity of the brain circuit.

View Article and Find Full Text PDF

Background: Phosphorylation plays an essential role in regulating voltage-gated sodium (Na(v)) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Na(v) channels. We posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Na(v) channels.

View Article and Find Full Text PDF

Novel proteoforms with single amino acid variations represent proteins that often have altered biological functions but are less explored in the human proteome. We have developed an approach, searching high quality shotgun proteomic data against an extended protein database, to identify expressed mutant proteoforms in glioma stem cell (GSC) lines. The systematic search of MS/MS spectra using PEAKS 7.

View Article and Find Full Text PDF

We describe the utility of integrated strategies that employ both translation of ENCODE data and major proteomic technology pillars to improve the identification of the "missing proteins", novel proteoforms, and PTMs. On one hand, databases in combination with bioinformatic tools are efficiently utilized to establish microarray-based transcript analysis and supply rapid protein identifications in clinical samples. On the other hand, sequence libraries are the foundation of targeted protein identification and quantification using mass spectrometric and immunoaffinity techniques.

View Article and Find Full Text PDF

The interpretation of phosphoproteomics data sets is crucial for generating hypotheses that guide therapeutic solutions, yet not many techniques have been applied to this type of analysis. This paper intends to give an overview about the two main standard techniques that can be applied to the analysis of these large scale data sets. These are data-driven or exploratory techniques based on a statistical model and topology-driven methods that analyze the signaling network from a dynamical standpoint.

View Article and Find Full Text PDF

The progress of developing effective interventions against psychiatric disorders has been limited due to a lack of understanding of the underlying cellular and functional mechanisms. Recent research findings focused on exploring novel causes of psychiatric disorders have highlighted the importance of the axonal initial segment (AIS), a highly specialized neuronal structure critical for spike initiation of the action potential. In particular, the role of voltage-gated sodium channels, and their interactions with other protein partners in a tightly regulated macromolecular complex has been emphasized as a key component in the regulation of neuronal excitability.

View Article and Find Full Text PDF

One subproject within the global Chromosome 19 Consortium is to define chromosome 19 gene and protein expression in glioma-derived cancer stem cells (GSCs). Chromosome 19 is notoriously linked to glioma by 1p/19q codeletions, and clinical tests are established to detect that specific aberration. GSCs are tumor-initiating cells and are hypothesized to provide a repository of cells in tumors that can self-replicate and be refractory to radiation and chemotherapeutic agents developed for the treatment of tumors.

View Article and Find Full Text PDF

Inflammation leads to activation of immune cells, resulting in production of hypobromous acid. Few investigations have been performed on protein bromination on a proteomic scale, even though bromination is a relatively abundant protein modification in endogenously brominated proteomes. Such studies have been hampered by the lack of an optimized database search strategy.

View Article and Find Full Text PDF

Unlabelled: Recommendations and outlines for standardization in biobanking processes are presented by a research team with long-term experience in clinical studies. These processes have important bearing on the use of samples in developing assays. These measurements are useful to document states of health and disease that are beneficial for academic research, commercial healthcare, drug development industry and government regulating agencies.

View Article and Find Full Text PDF