Polymorphism of the gene encoding mucin 1 (MUC1) is associated with skeletal and dental phenotypes in human genomic studies. Animals lacking MUC1 exhibit mild reduction in bone density. These phenotypes could be a consequence of modulation of bodily Ca homeostasis by MUC1, as suggested by the previous observation that MUC1 enhances cell surface expression of the Ca-selective channel, TRPV5, in cultured unpolarized cells.
View Article and Find Full Text PDFMethods Mol Biol
March 2022
Galectins are best known for their ability to bind glycoconjugates containing β-galactose, but classification of these small proteins within the galectin family is also defined by amino acid homology within structural domains and exon/intron junctions within genes. As galectins are expressed by organisms as diverse as some fungi, C. elegans, fish, birds and mammals, and biological activities attributed to galectins are equally diverse, it becomes essential to identify, clone, and characterize galectins from many sources.
View Article and Find Full Text PDFCell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and downregulating the NF-κB pathway. KIM-1 cleavage blunts its anti-inflammatory activities. We reported that mucin 1 (MUC1) is protective in a mouse model of ischemia-reperfusion injury (IRI).
View Article and Find Full Text PDFAlthough type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4β isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation.
View Article and Find Full Text PDFIntroduction: Plasmin and its precursor, plasminogen, are detectable in urine from patients with glomerular disease. Urinary plasmin(ogen) levels correlate with blood pressure (BP) and may contribute to renal Na retention by activating the epithelial Na channel (ENaC). In a longitudinal nested-cohort study, we asked whether urinary plasmin(ogen) levels predict subsequent increase in BP, incident hypertension, or mortality in subjects with type I diabetes, who often develop proteinuria.
View Article and Find Full Text PDFEpithelial Na channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αβγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, β-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding.
View Article and Find Full Text PDFParaoxonase-2 (PON-2) is a membrane-bound lactonase with unique anti-oxidative and anti-atherosclerotic properties. PON-2 shares key structural elements with MEC-6, an endoplasmic reticulum-resident molecular chaperone in MEC-6 modulates the expression of a mechanotransductive ion channel comprising MEC-4 and MEC-10 in touch-receptor neurons. Because mRNA resides in multiple rat nephron segments, including the aldosterone-sensitive distal nephron where the epithelial Na channel (ENaC) is expressed, we hypothesized that PON-2 would similarly regulate ENaC expression.
View Article and Find Full Text PDFThe epithelial sodium channel (ENaC) has an important role in regulating extracellular fluid volume and blood pressure, as well as airway surface liquid volume and mucociliary clearance. ENaC is a trimer of three homologous subunits (α, β, and γ). We previously reported that cytoplasmic residues on the β (βCys-43 and βCys-557) and γ (γCys-33 and γCys-41) subunits are palmitoylated.
View Article and Find Full Text PDFThe hypoxia-inducible factor (HIF)-1 and β-catenin protective pathways represent the two most significant cellular responses that are activated in response to acute kidney injury. We previously reported that murine mucin (Muc)1 protects kidney function and morphology in a mouse model of ischemia-reperfusion injury (IRI) by stabilizing HIF-1α, enhancing HIF-1 downstream signaling, and thereby preventing metabolic stress (Pastor-Soler et al. Muc1 is protective during kidney ischemia-reperfusion injury.
View Article and Find Full Text PDFThe extracellular regions of epithelial Na(+) channel subunits are highly ordered structures composed of domains formed by α helices and β strands. Deletion of the peripheral knuckle domain of the α subunit in the αβγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na(+) (Na(+) self-inhibition). In contrast, deletion of either the β or γ subunit knuckle domain within the αβγ trimer dramatically reduces epithelial Na(+) channel function and surface expression, and impairs subunit maturation.
View Article and Find Full Text PDFThis article was withdrawn by the authors before final publication on September 16, 2004.
View Article and Find Full Text PDFIschemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI.
View Article and Find Full Text PDFGalectins are best known for their ability to bind glycoconjugates containing β-galactose, but classification of these small proteins within the galectin family is also defined by amino acid homology within structural domains and exon/intron junctions within genes. As galectins are expressed by organisms as diverse as some fungi, C. elegans, fish, birds, and mammals, and biological activities attributed to galectins are equally diverse, it becomes essential to identify, clone, and characterize galectins from many sources.
View Article and Find Full Text PDFThe epithelial sodium channel (ENaC) is composed of three homologous subunits (α, β, and γ) with cytoplasmic N and C termini. Our previous work revealed that two cytoplasmic Cys residues in the β subunit, βCys-43 and βCys-557, are Cys-palmitoylated. ENaCs with mutant βC43A/C557A exhibit normal surface expression but enhanced Na(+) self-inhibition and reduced channel open probability.
View Article and Find Full Text PDFThe apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005.
View Article and Find Full Text PDFEpithelial sodium channels (ENaC) are critically important in the regulation of ion and fluid balance in both renal and respiratory epithelia. ENaC functional polymorphisms may contribute to alterations in blood pressure in the general population. We previously reported that the A663T polymorphism in the C terminus of the α-subunit altered ENaC functional and surface expression in Xenopus laevis oocytes (Samaha FF, Rubenstein RC, Yan W, Ramkumar M, Levy DI, Ahn YJ, Sheng S, Kleyman TR.
View Article and Find Full Text PDFMUC1 is normally apical in polarized epithelial cells but is aberrantly localized in tumor cells. To better understand the mechanism of this altered localization as well as the normal functions of MUC1, we are focused on characterizing the features of MUC1 that regulate the membrane trafficking of this mucin-like transmembrane protein. Previous studies using heterologous expression of MUC1 in CHO and MDCK cells revealed that trafficking to the cell surface as well as endocytosis and recycling is modulated by glycosylation, palmitoylation, and docking of adaptor protein complexes.
View Article and Find Full Text PDFMUC1 is efficiently delivered to the apical surface of polarized Madin-Darby canine kidney (MDCK) cells by transit through apical recycling endosomes, a route associated with delivery of apical proteins with glycan-dependent targeting signals. However, a role for glycans in MUC1 sorting has not been established. A key feature of MUC1 is a heavily O-glycosylated mucin-like domain with a variable number of nearly perfect tandem repeats and adjacent imperfect repeats.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2011
Galectins (Gal) are β-galactoside-binding proteins that function in epithelial development and homeostasis. An overlapping role for Gal-3 and Gal-7 in wound repair was reported in stratified epithelia. Although Gal-7 was thought absent in simple epithelia, it was reported in a proteomic analysis of cilia isolated from cultured human airway, and we recently identified Gal-7 transcripts in Madin-Darby canine kidney (MDCK) cells (Poland PA, Rondanino C, Kinlough CL, Heimburg-Molinaro J, Arthur CM, Stowell SR, Smith DF, Hughey RP.
View Article and Find Full Text PDFMadin Darby canine kidney (MDCK) cells are a well characterized epithelial cell line used to study mechanisms of polarized delivery. As glycans on apically expressed proteins have been identified as targeting signals, and crosslinking by the abundant galectin-3 has been implicated in the mechanism of glycan-dependent sorting, we wanted to identify other members of the galectin (Gal) family expressed in MDCK cells. By analyzing intron-exon boundaries, we identified canine genes that were highly homologous to mammalian Gal-1, 2, 3, 4, 7, 8, 9, and 12, and galectin-related HSPC159 and GRIFIN.
View Article and Find Full Text PDFThe epithelial Na(+) channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated.
View Article and Find Full Text PDFThe X-linked disorder Lowe syndrome arises from mutations in OCRL1, a lipid phosphatase that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP(2)). Most patients with Lowe syndrome develop proteinuria very early in life. PIP(2) dynamics are known to modulate numerous steps in membrane trafficking, and it has been proposed that OCRL1 activity regulates the biogenesis or trafficking of the multiligand receptor megalin.
View Article and Find Full Text PDFMUC1 is a heavily glycosylated transmembrane protein localized at the apical surface of polarized epithelial cells. Here, we examined the biosynthetic route of newly synthesized MUC1 in polarized Madin-Darby canine kidney (MDCK) cells. Apically and basolaterally destined cargo are sorted at the trans-Golgi network into distinct vesicles, and proteins with lipid raft-dependent apical targeting signals and glycan-dependent apical targeting signals appear to specifically transit apical early endosomes (AEEs) and apical recycling endosomes (AREs), respectively.
View Article and Find Full Text PDFMUC1 is a mucin-like transmembrane protein expressed on the apical surface of epithelia, where it protects the cell surface. The cytoplasmic domain has numerous sites for phosphorylation and docking of proteins involved in signal transduction. In a previous study, we showed that the cytoplasmic YXXphi motif Y20HPM and the tyrosine-phosphorylated Y60TNP motif are required for MUC1 clathrin-mediated endocytosis through binding AP-2 and Grb2, respectively (Kinlough, C.
View Article and Find Full Text PDFgamma-Glutamyltranspeptidase (gammaGT) is found primarily on the apical surface of epithelial and endothelial cells, where it degrades reduced and oxidized glutathione (gamma-GluCysGly) by hydrolysis of the unique gamma-glutamyl bond. Glutathione plays a key role in disulfide rearrangement in the endoplasmic reticulum (ER) and acts as a redox buffer. Previous work has shown that overexpression of gammaGT or an inactive splice variant gammaGTDelta7 mediates a redox stress response in the endoplasmic reticulum (ER) characterized by increased levels of BiP and induction of CHOP-10.
View Article and Find Full Text PDF