Publications by authors named "Carol J Watkins"

Background: Folate, vitamin B-12, and vitamin B-6 are essential nutritional components in one-carbon metabolism and are required for methylation capacity. The availability of these vitamins may therefore modify methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) by PE-N-methyltransferase (PEMT) in the liver. It has been suggested that PC synthesis by PEMT plays an important role in the transport of polyunsaturated fatty acids (PUFAs) like docosahexaenoic acid (DHA) from the liver to plasma and possibly other tissues.

View Article and Find Full Text PDF

Choline is an important component of the human diet and is required for the endogenous synthesis of choline-containing phospholipids, acetylcholine and betaine. Choline can also be synthesised de novo by the sequential methylation of phosphatidylethanolamine to phosphatidylcholine. Vitamins B6, B12 and folate can enhance methylation capacity and therefore could influence choline availability not only by increasing endogenous choline synthesis but also by reducing choline utilisation.

View Article and Find Full Text PDF

Aims: Treatments that increase acetylcholine release from brain slices decrease the synthesis of phosphatidylcholine by, and its levels in, the slices. We examined whether adding cytidine or uridine to the slice medium, which increases the utilization of choline to form phospholipids, also decreases acetylcholine levels and release.

Methods: We incubated rat brain slices with or without cytidine or uridine (both 25-400 microM), and with or without choline (20-40 microM), and measured the spontaneous and potassium-evoked release of acetylcholine.

View Article and Find Full Text PDF

The synthesis of brain phosphatidylcholine may utilize three circulating precursors: choline; a pyrimidine (e.g., uridine, converted via UTP to brain CTP); and a PUFA (e.

View Article and Find Full Text PDF

We examined the biochemical pathways whereby oral uridine-5'-monophosphate (UMP) increases membrane phosphatide synthesis in brains of gerbils. We previously showed that supplementing PC12 cells with uridine caused concentration-related increases in CDP-choline levels, and that this effect was mediated by elevations in intracellular uridine triphosphate (UTP) and cytidine triphosphate (CTP). In the present study, adult gerbils received UMP (1 mmol/kg), a constituent of human breast milk and infant formulas, by gavage, and plasma samples and brains were collected for assay between 5 min and 8 h thereafter.

View Article and Find Full Text PDF

A novel paralytic mutant, nubian, was identified in a behavioral screen for conditional temperature-sensitive seizure mutants in Drosophila melanogaster. nubian mutants display reduced lifespan, abnormal motor behavior, altered synaptic structure, and defective neurotransmitter release. The nubian mutant disrupts phosphoglycerate kinase (PGK), an enzyme required for ATP generation in the terminal stage of the glycolytic pathway.

View Article and Find Full Text PDF

Oral administration of CDP-choline to rats raises plasma and brain cytidine levels and increases brain levels of phosphatidylcholine (PC). In contrast, in humans oral CDP-choline increases plasma levels of uridine. To determine whether uridine can also enhance PC synthesis, we developed an assay for CDP-choline, an immediate and rate-limiting precursor in PC synthesis, and measured this intermediate in clonal PC12 rat pheochromocytoma cells incubated with various concentrations of uridine or cytidine.

View Article and Find Full Text PDF