Publications by authors named "Carol Hartley"

Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other.

View Article and Find Full Text PDF
Article Synopsis
  • Infectious laryngotracheitis (ILT) is a major issue for the poultry industry, caused by the infectious laryngotracheitis virus (ILTV), leading to animal welfare concerns and economic losses.
  • This study compared the interactions between a glycoprotein G deletion mutant vaccine strain of ILTV and its wild-type strain in chicken cell cultures, revealing distinct gene expression patterns in different cell types.
  • Results indicated that the type of chicken cells used had a bigger impact on host and viral gene transcription than the presence or absence of the gG gene, emphasizing the need for careful cell-line choice in future research on these virus interactions.
View Article and Find Full Text PDF

Hendra virus (HeV) is lethal to horses and a zoonotic threat to humans in Australia, causing severe neurological and/or respiratory disease with high mortality. An equine vaccine has been available since 2012. Foals acquire antibodies from their dams by ingesting colostrum after parturition, therefore it is assumed that foals of mares vaccinated against HeV will have passive HeV antibodies circulating during the first several months of life until they are actively vaccinated.

View Article and Find Full Text PDF

Reports of newly discovered equine hepatotropic flavi- and parvoviruses have emerged throughout the last decade in many countries, the discovery of which has stimulated a great deal of interest and clinical research. Although commonly detected in horses without signs of disease, equine parvovirus hepatitis (EqPV-H) and equine hepacivirus (EqHV) have been associated with liver disease, including following the administration of contaminated anti-toxin. Our aim was to determine whether EqPV-H and EqHV are present in Australian horses and whether EqPV-H was present in French horses and to examine sequence diversity between strains of both viruses amongst infected horses on either side of the globe.

View Article and Find Full Text PDF

There is a pressing need for effective feral cat management globally due to overabundant feline populations, disease transmission and their destructive impact on biodiversity. Virus-vectored immunocontraception (VVIC) is an attractive method for cat population management. Virus-vectored immunocontraceptives could be self-disseminating through horizontal transmission of the VVIC in feral cat populations, or they may be modified to act as non-transmissible vaccine-type immunocontraceptives for delivery to individual cats.

View Article and Find Full Text PDF

Understanding the mechanism of interfacial enzyme kinetics is critical to the development of synthetic biological systems for the production of value-added chemicals. Here, the interfacial kinetics of the catalysis of β-nicotinamide adenine dinucleotide (NAD)-dependent enzymes acting on NAD tethered to the surface of silica nanoparticles (SiNPs) has been investigated using two complementary and supporting kinetic approaches: enzyme excess and reactant (NAD) excess. Kinetic models developed for these two approaches characterize several critical reaction steps including reversible enzyme adsorption, complexation, decomplexation, and catalysis of the surface-bound enzyme/NAD complex.

View Article and Find Full Text PDF

Background: Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF).

View Article and Find Full Text PDF

Pichia pastoris (Komagataella phaffii) is widely used for industrial production of heterologous proteins due to high secretory capabilities but selection of highly productive engineered strains remains a limiting step. Despite availability of a comprehensive molecular toolbox for construct design and gene integration, there is high clonal variability among transformants due to frequent multi-copy and off-target random integration. Therefore, functional screening of several hundreds of transformant clones is essential to identify the best protein production strains.

View Article and Find Full Text PDF

Infectious laryngotracheitis virus (ILTV; an alphaherpesvirus) is a respiratory pathogen of chickens and causes significant economic losses in the poultry industry globally, in addition to severe animal health and welfare concerns. To date, studying the role of ILTV genes in viral infection, replication or pathogenesis has largely been limited to genes that can be deleted from the ILTV genome and the resultant deletion mutants characterized or . However, this approach is not suitable for the study of essential genes.

View Article and Find Full Text PDF

A transformation in our food production system is being enabled by the convergence of advances in genome-based technologies and traditional fermentation. Science at the intersection of synthetic biology, fermentation, downstream processing for product recovery, and food science is needed to support technology development for the production of fermentation-derived food ingredients. The business and markets for fermentation-derived ingredients, including policy and regulations are discussed.

View Article and Find Full Text PDF
Article Synopsis
  • Glycoproteins E and I (gE and gI) in alphaherpesviruses are crucial for the spread of the virus between cells.
  • Researchers used traditional and CRISPR/Cas9 techniques to delete gE and gI from infectious laryngotracheitis virus (ILTV) strains CSW-1 and A20, replacing them with a green fluorescent protein (GFP) for identification.
  • The modified virus mutants could not propagate independently from the wildtype virus, indicating that gE and gI are essential for cell-to-cell spread in ILTV strains.
View Article and Find Full Text PDF
Article Synopsis
  • Equid gammaherpesvirus 2 (EHV2) is a virus found in horses that can cause respiratory disease in foals and has a diverse genetic makeup, with varying strains commonly co-existing in infected horses.
  • Whole genome sequencing of 20 EHV2 isolates revealed significant differences in genome size, nucleotide sequence identity, and evidence of genetic recombination among the strains.
  • The study suggests that the genetic diversity and evolutionary changes in EHV2 are largely influenced by recombination, highlighting its importance in the virus's adaptation and pathogenicity.
View Article and Find Full Text PDF

During Australia's first and only outbreak of equine influenza (EI), which was restricted to two northeastern states, horses were strategically vaccinated with a recombinant canarypox-vectored vaccine (rCP-EIV; ProteqFlu™, Merial P/L). The vaccine encoded for haemagglutinin (HA) belonging to two equine influenza viruses (EIVs), including an American and Eurasian lineage subtype that predated the EIV responsible for the outbreak (A/equine/Sydney/07). Racehorses in Victoria (a southern state that remained free of EI) were vaccinated prophylactically.

View Article and Find Full Text PDF

Equine herpesviruses (EHVs) are common respiratory pathogens in horses; whilst the alphaherpesviruses are better understood, the clinical importance of the gammaherpesviruses remains undetermined. This study aimed to determine the prevalence of, and any association between, equine respiratory herpesviruses EHV1, -2, -4 and -5 infection in horses with and without clinical signs of respiratory disease. Nasal swabs were collected from 407 horses in Victoria and included clinically normal horses that had been screened for regulatory purposes.

View Article and Find Full Text PDF

Members of the family have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125-241 kbp contain 70-170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species.

View Article and Find Full Text PDF

Herpesviruses are attractive vaccine vector candidates due to their large double stranded DNA genome and latency characteristics. Within the scope of veterinary vaccines, herpesvirus-vectored vaccines have been well studied and commercially available vectored vaccines are used to help prevent diseases in different animal species. Felid alphaherpesvirus 1 (FHV-1) has been characterised as a vector candidate to protect against a range of feline pathogens.

View Article and Find Full Text PDF

causes serious infections in ruminants, leading to huge economic losses. Lipoproteins are key components of the mycoplasma membrane and are believed to function in nutrient acquisition, adherence, enzymatic interactions with the host, and induction of the host's immune response to infection. Many genes of have not been assigned functions, in part because of their low sequence similarity with other bacteria, making it difficult to extrapolate gene functions.

View Article and Find Full Text PDF

Infectious laryngotracheitis virus (ILTV, Gallid alphaherpesvirus 1) causes severe respiratory disease in chickens and has a major impact on the poultry industry worldwide. Live attenuated vaccines are widely available and are administered early in the life of commercial birds, often followed by one or more rounds of revaccination, generating conditions that can favour recombination between vaccines. Better understanding of the factors that contribute to the generation of recombinant ILTVs will inform the safer use of live attenuated herpesvirus vaccines.

View Article and Find Full Text PDF
Article Synopsis
  • Equine abortion significantly impacts the equine industry's economy, with equine herpesvirus 1 being a major infectious cause, along with other agents like Coxiella burnetii, Leptospira spp., and Toxoplasma gondii.
  • A study analyzed 600 aborted equine fetal tissues in Australia, finding a 4% prevalence of C. burnetii, particularly higher between 1997-2003 and 2016-2018, while all samples tested negative for Leptospira spp. and Toxoplasma gondii.
  • The findings indicate C. burnetii's presence in aborted equine tissues, which may pose zoonotic risks (like Q fever), highlighting the need for
View Article and Find Full Text PDF

The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact.

View Article and Find Full Text PDF

Latency is an important feature of infectious laryngotracheitis virus (ILTV) yet is poorly understood. This study aimed to compare latency characteristics of vaccine (SA2) and field (CL9) strains of ILTV, establish an reactivation system and examine ILTV infection in peripheral blood mononuclear cells (PBMC) in specific pathogen-free chickens. Birds were inoculated with SA2 or CL9 ILTV and then bled and culled at 21 or 35 days post-inoculation (dpi).

View Article and Find Full Text PDF

Infectious laryngotracheitis virus (ILTV) is an economically significant respiratory pathogen of poultry. Novel recombinant strains of ILTV have emerged in Australia during the last decade and currently class 9 (CL9) and class 10 (CL10) ILTV are the most prevalent circulating strains. This study conducted a comprehensive investigation of the pathogenesis of these two viral strains.

View Article and Find Full Text PDF

Gallid alphaherpesvirus 1 causes infectious laryngotracheitis (ILT) in farmed poultry worldwide. Intertypic recombination between vaccine strains of this virus has generated novel and virulent isolates in field conditions. In this study, in vitro and in ovo systems were co-infected and superinfected under different conditions with two genomically distinct and commonly used ILTV vaccines.

View Article and Find Full Text PDF

Infectious laryngotracheitis virus (ILTV) causes severe respiratory disease in chickens. ILTV can establish latency and reactivate later in life, but there have been few investigations of ILTV latency. This study aimed to contribute to the methodologies available to detect latent ILTV.

View Article and Find Full Text PDF

Infectious laryngotracheitis (ILT) is a respiratory disease that affects chickens. It is caused by the alphaherpesvirus, infectious laryngotracheitis virus (ILTV). This virus undergoes lytic replication in the epithelial cells of the trachea and upper respiratory tract (URT) and establishes latent infection in the trigeminal ganglia (TG) and trachea.

View Article and Find Full Text PDF