Publications by authors named "Carol Dalgarno"

Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites.

View Article and Find Full Text PDF

Cell signaling plays a critical role in regulating cellular behavior and fate. While multimodal single-cell sequencing technologies are rapidly advancing, scalable and flexible profiling of cell signaling states alongside other molecular modalities remains challenging. Here we present Phospho-seq, an integrated approach that aims to quantify phosphorylated intracellular and intranuclear proteins, and to connect their activity with cis-regulatory elements and transcriptional targets.

View Article and Find Full Text PDF

Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity that is governed by the cleavage and polyadenylation (CPA) regulatory machinery. To better understand how these proteins govern polyA site choice we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 known CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a statistical framework to specifically identify perturbation-dependent changes in intronic and tandem polyadenylation, and discover modules of co-regulated polyA sites exhibiting distinct functional properties.

View Article and Find Full Text PDF

Drosophila sechellia is an island endemic host specialist that has evolved to consume the toxic fruit of Morinda citrifolia, also known as noni fruit. Recent studies by our group and others have examined genome-wide gene expression responses of fruit flies to individual highly abundant compounds found in noni responsible for the fruit's unique chemistry and toxicity. In order to relate these reductionist experiments to the gene expression responses to feeding on noni fruit itself, we fed rotten noni fruit to adult female D.

View Article and Find Full Text PDF

The ribosome CAR interaction surface behaves as an extension of the decoding center A site and has H-bond interactions with the +1 codon, which is next in line to enter the A site. Through molecular dynamic simulations, we investigated the codon sequence specificity of this CAR-mRNA interaction and discovered a strong preference for GCN codons, suggesting that there may be a sequence-dependent layer of translational regulation dependent on the CAR interaction surface. Dissection of the CAR-mRNA interaction through nucleotide substitution experiments showed that the first nucleotide of the +1 codon dominates over the second nucleotide position, consistent with an energetically favorable zipper-like activity that emanates from the A site through the CAR-mRNA interface.

View Article and Find Full Text PDF

The ribosome CAR interaction surface is hypothesized to provide a layer of translation regulation through hydrogen-bonding to the +1 mRNA codon that is next to enter the ribosome A site during translocation. The CAR surface consists of three residues, 16S/18S rRNA C1054, A1196 ( 16S numbering), and R146 of yeast ribosomal protein Rps3. R146 can be methylated by the Sfm1 methyltransferase which is downregulated in stressed cells.

View Article and Find Full Text PDF