Publications by authors named "Carol C Shoulders"

Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells.

View Article and Find Full Text PDF

This commentary integrates historical and modern findings that underpin our understanding of the cell-specific functions of the Tribbles (TRIB) proteins that bear on tumorigenesis. We touch on the initial discovery of roles played by mammalian TRIB proteins in a diverse range of cell-types and pathologies, for example, TRIB1 in regulatory T-cells, TRIB2 in acute myeloid leukaemia and TRIB3 in gliomas; the origins and diversity of transcripts; microRNA-mediated (miRNA) regulation of transcript decay and translation; the substantial conformational changes that ensue on binding of TRIB1 to the transcription factor C/EBPα; and the unique pocket formed by TRIB1 to sequester its C-terminal motif bearing a binding site for the E3 ubiquitin ligase COP1. Unashamedly, the narrative is relayed through the perspective of the Tribbles Research and Innovation Network, and its establishment, progress and future ambitions: the growth of TRIB and COP1 research to hasten discovery of their cell-specific contributions to health and obesity-related cancers.

View Article and Find Full Text PDF

Background: Family history (FH) of cardiovascular disease (CVD) in first degree relatives (FDR) is a major risk factor, especially for premature events. Data are sparse on FH of different manifestations of CVD among FDRs of patients with premature myocardial infarction (MI), chronic stable angina (CSA) or peripheral vascular disease (PVD).

Methods: We obtained FHs from first degree relatives (parents or siblings) of 230 consecutive patients with premature (men < 60 and women < 65 years) CVD, including 79 wth MI, 39 CSA, 51 PVD and 61 blood donors.

View Article and Find Full Text PDF

Macrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced expression mediates the strong genetic association between the locus and increased CHD risk in man. However, we report here that myeloid-specific (m) deficiency reduces early atheroma formation and that m transgene expression increases atherogenesis.

View Article and Find Full Text PDF

Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia.

View Article and Find Full Text PDF

Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify key biological processes affected in the subcutaneous fat tissue of patients with familial combined hyperlipidemia (FCHL), revealing a unique FCHL transcriptome involved in various systems like cytoskeleton and lipid regulation.
  • Expression levels of the cell-cycle inhibitor CDKN2B were found to be elevated, and its knockdown in lab cells increased lipid accumulation, indicating a link between CDKN2B and fat storage.
  • The research suggests that dysfunctional fat tissue development is a critical aspect of FCHL, although other external factors might also contribute to the increased CDKN2B expression and lipid problems in these patients.
View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify genetic causes for extreme levels of high-density lipoprotein cholesterol (HDL-C) using targeted high-throughput sequencing.
  • Researchers sequenced 195 lipid-related genes and 78 unrelated genes in patients with extreme HDL-C levels and compared the findings with control groups.
  • Results showed that individuals with extreme HDL-C had a higher prevalence of rare genetic variants in lipid-related genes, indicating that most extreme HDL-C phenotypes likely arise from multiple genetic factors rather than single mutations.
View Article and Find Full Text PDF

Genomic inversions are an increasingly recognized source of genetic variation. However, a lack of reliable high-throughput genotyping assays for these structures has precluded a full understanding of an inversion's phylogenetic, phenotypic, and population genetic properties. We characterize these properties for one of the largest polymorphic inversions in man (the ∼4.

View Article and Find Full Text PDF

This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL).

View Article and Find Full Text PDF

This review summarizes the progress made in cutting through the biological and genetic complexity of the Gordian knot that is familial combined hyperlipidemia. We particularly focus on how the application of new genomic technologies, especially massively parallel sequencing and high-throughput genotyping platforms, promise to accelerate the gene discovery process in this common, highly atherogenic disorder, with important diagnostic and therapeutic implications.

View Article and Find Full Text PDF

Objective: Previous studies have indicated that the hyperlipidemia and gene expression changes induced by a short-term high-fat diet (HFD) are mediated through the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1beta, and that in vitro both PGC-1beta and PGC -1alpha increase PPARalpha-mediated transcriptional activities. Here, we examined the in vivo effects of these two coactivators in potentiating the lipid lowering properties of the PPARalpha agonist Wy14,643 (Wy).

Methods And Results: C57BL/6 mice were fed chow or HFD and transduced with adenoviruses encoding PGC-1alpha or PGC-1beta.

View Article and Find Full Text PDF

The microsomal triglyceride transfer protein (MTP), along with its partner, protein disulphide isomerase, performs a wide range of lipid transport functions necessary for maintenance of whole-body lipid homeostasis. In this review, we summarize the recent deluge of comparative and functional genomic data that have forced a radical re-appraisal of the evolutionary processes that established the major lipid transport pathway in man, and the different structural and lipid transfer roles MTP plays within it. This is followed by an overview of MTP structure-function relationships, highlighting two newly identified functional roles: first, the production of small, apolipoprotein (apo)B-containing lipoprotein particles in cardiac myocytes and, second, the lipidation of a major histocompatibility complex class-I related molecule (CD1d) that presents glycolipid antigens to distinct subsets of natural killer T cells.

View Article and Find Full Text PDF
Article Synopsis
  • USF proteins are widely expressed and could play a role in carbohydrate and lipid metabolism disorders.
  • A study has linked specific USF1 alleles to familial combined hyperlipidaemia, raising concerns about increased risk of cardiovascular disease.
  • Research techniques like chromatin immunoprecipitation and promoter microarray assays will be used to explore the transcriptional networks related to glucose and lipid regulation in the body.
View Article and Find Full Text PDF

Background/aims: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG.

Methods And Results: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and activities of diacylglycerol acyltransferase (DGAT) and microsomal triglyceride transfer protein (MTP) are similar in Apoe(-/-) and wild type mice.

View Article and Find Full Text PDF

Purpose Of Review: The transport of lipoproteins through the secretory pathways of enterocytes and hepatocytes is pivotal for whole-body lipid homeostasis. This review focuses on the assembly and structural evolution of COPII (coat protein) transport carriers that are essential for the transport of chylomicrons from the endoplasmic reticulum to the Golgi apparatus.

Recent Findings: The assembly of endoplasmic reticulum to Golgi transport carriers commences with the coating of specific areas of the endoplasmic reticulum membrane with Sar1-GTP and the Sec23/24 heterodimer.

View Article and Find Full Text PDF

In functional genomics, DNA microarrays for gene expression profiling are increasingly being used to provide insights into biological function or pathology. To better understand the significance of the multiple transcriptional changes across a time period, the temporal changes in phenotype must be described. Orotic acid-induced fatty liver disease was investigated at the transcriptional and metabolic levels using microarrays and metabolic profiling in two strains of rats.

View Article and Find Full Text PDF

Objective: Combined hyperlipidemia is a common disorder, characterized by a highly atherogenic lipoprotein profile and a substantially increased risk of coronary heart disease. The purpose of this study was to establish whether variations of apolipoprotein A5 (APOA5), a newly discovered gene of lipid metabolism located 30 kbp downstream of the APOA1/C3/A4 gene cluster, contributes to the transmission of familial combined hyperlipidemia (FCHL).

Methods And Results: We performed linkage and association tests on 128 families.

View Article and Find Full Text PDF

Unlabelled: Background- Combined hyperlipidemia is a common disorder characterized by a highly atherogenic lipoprotein profile and increased risk of coronary heart disease. The etiology of the lipid abnormalities (increased serum cholesterol and triglyceride or either lipid alone) is unknown.

Methods And Results: We assembled 2 large cohorts of families with familial combined hyperlipidemia (FCHL) and performed disease and quantitative trait linkage analyses to evaluate the inheritance of the lipid abnormalities.

View Article and Find Full Text PDF

Dietary fat is an important source of nutrition. Here we identify eight mutations in SARA2 that are associated with three severe disorders of fat malabsorption. The Sar1 family of proteins initiates the intracellular transport of proteins in COPII (coat protein)-coated vesicles.

View Article and Find Full Text PDF