Publications by authors named "Carol Brevett"

Global occurrences of the intentional adulteration of food with a chemical toxicant culled from the literature and news reports from 2009 to 2022 were analyzed in terms of their ability to cause mass public health harm. A total of 76 intentional adulteration events that involved over 27 chemicals and 16 foods were identified. The chemicals used included pesticides, rat poisons, illicit drugs, and commercial chemicals.

View Article and Find Full Text PDF

The large amounts of opioids and the emergence of increasingly potent illicitly manufactured synthetic opioids circulating in the unregulated drug supply in North America and Europe are fueling not only the ongoing public health crisis of overdose deaths but also raise the risk of another type of disaster: deliberate opioid release with the intention to cause mass harm. Synthetic opioids are highly potent, rapidly acting, can cause fatal ventilatory depression, are widely available, and have the potential to be disseminated for mass exposure, for example, if effectively formulated, via inhalation or ingestion. As in many other chemical incidents, the health consequences of a deliberate release of synthetic opioid would manifest quickly, within minutes.

View Article and Find Full Text PDF

The rate of degradation of the chemical warfare agent sulfur mustard, bis(2-chloroethyl) sulfide, was measured on ambient and moist concrete using (13)C Solid State Magic Angle Spinning Nuclear Magnetic Resonance (SSMAS NMR). Three samples of concrete made by the same formulation, but differing in age and alkalinity were used. The sulfur mustard eventually degraded to thiodiglycol and 1,4-oxathiane via the intermediate sulfonium ions CH-TG, H-TG, H-2TG and O(CH(2)CH(2))(2)S(+)CH(2)CH(2)OH on all of the concrete samples, and in addition formed 8-31% vinyl moieties on the newer, more alkaline concrete samples.

View Article and Find Full Text PDF

The products formed from the degradation of the blister agent sulfur mustard [bis(2-chloroethyl) sulfide] on concrete were identified using gas chromatography with mass spectrometry detection (GC/MSD), (1)H NMR, 2D (1)H-(13)C NMR and (13)C solid state magic angle spinning (SSMAS) NMR. In situ and extraction experiments were performed. Sulfur mustard was detected in the in situ (13)C SSMAS samples for 12 weeks, whereas less than 5% of the sulfur mustard was detected in extracts from the concrete monoliths after 8 days.

View Article and Find Full Text PDF

The effect of drop size on the degradation rate of VX, O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonothioate, in fresh concrete has been examined using (31)P NMR. Drops of neat VX, ranging in size from 4 microL to 0.2 microL, applied to small concrete coupons (8 mm x 15 mm) were observed to degrade at different rates, with the 1 microL and smaller drops reacting in less than 4 days, and the larger droplets reacting in less than 11 days.

View Article and Find Full Text PDF