Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections . Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war.
View Article and Find Full Text PDFMolecular motors often work in teams to move a cellular cargo. Yet measuring the forces exerted by each motor is challenging. Using a sensor made with denatured ssDNA and multi-color fluorescence, we measured picoNewtons of forces and nanometer distances exerted by individual constrained kinesin-1 motors acting together while driving a common microtubule .
View Article and Find Full Text PDFHow cargoes move within a crowded cell-over long distances and at speeds nearly the same as when moving on unimpeded pathway-has long been mysterious. Through an in vitro force-gliding assay, which involves measuring nanometer displacement and piconewtons of force, we show that multiple mammalian kinesin-1 (from 2 to 8) communicate in a team by inducing tension (up to 4 pN) on the cargo. Kinesins adopt two distinct states, with one-third slowing down the microtubule and two-thirds speeding it up.
View Article and Find Full Text PDFPlasmodium parasites are obligate intracellular protozoa and causative agents of malaria, responsible for half a million deaths each year. The lifecycle progression of the parasite is reliant on cell motility, a process driven by myosin A, an unconventional single-headed class XIV molecular motor. Here we demonstrate that myosin A from Plasmodium falciparum (PfMyoA) is critical for red blood cell invasion.
View Article and Find Full Text PDFMicrotubule-associated proteins (MAPs) regulate microtubule polymerization, dynamics, and organization. In addition, MAPs alter the motility of kinesin and dynein to control trafficking along microtubules. MAP7 (ensconsin, E-MAP-115) is a ubiquitous MAP that organizes the microtubule cytoskeleton in mitosis and neuronal branching.
View Article and Find Full Text PDFWe investigated the role of full-length Bicaudal D (BicD) binding partners in dynein-dynactin activation for mRNA transport on microtubules. Full-length BicD robustly activated dynein-dynactin motility only when both the mRNA binding protein Egalitarian (Egl) and mRNA cargo were present, and electron microscopy showed that both Egl and mRNA were needed to disrupt a looped, auto-inhibited BicD conformation. BicD can recruit two dimeric dyneins, resulting in faster speeds and longer runs than with one dynein.
View Article and Find Full Text PDFWe develop magnetic cytoskeleton affinity (MiCA) purification, which allows for rapid isolation of molecular motors conjugated to large multivalent quantum dots, in miniscule quantities, which is especially useful for single-molecule applications. When purifying labeled molecular motors, an excess of fluorophores or labels is usually used. However, large labels tend to sediment during the centrifugation step of microtubule affinity purification, a traditionally powerful technique for motor purification.
View Article and Find Full Text PDFMotility of the apicomplexan malaria parasite is enabled by a multiprotein glideosome complex, whose core is the class XIV myosin motor, PfMyoA, and a divergent actin (PfAct1). Parasite motility is necessary for host-cell invasion and virulence, but studying its molecular basis has been hampered by unavailability of sufficient amounts of PfMyoA. Here, we expressed milligram quantities of functional full-length PfMyoA with the baculovirus/9 cell expression system, which required a UCS (UNC-45/CRO1/She4p) family myosin chaperone from spp.
View Article and Find Full Text PDFStudies in fission yeast have provided the basis for the most advanced models of the dynamics of the cytokinetic contractile ring. Myo2, a class-II myosin, is the major source of tension in the contractile ring, but how Myo2 is anchored and regulated to produce force is poorly understood. To enable more detailed biochemical/biophysical studies, Myo2 was expressed in the baculovirus/9 insect cell system with its two native light chains, Rlc1 and Cdc4.
View Article and Find Full Text PDFMyo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9.
View Article and Find Full Text PDFPoint mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region.
View Article and Find Full Text PDFMany diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2014
Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size.
View Article and Find Full Text PDFA hallmark of class-V myosins is their processivity--the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches.
View Article and Find Full Text PDFDisruptions in microtubule motor transport are associated with a variety of neurodegenerative diseases. Post-translational modification of the cargo-binding domain of the light and heavy chains of kinesin has been shown to regulate transport, but less is known about how modifications of the motor domain affect transport. Here we report on the effects of phosphorylation of a mammalian kinesin motor domain by the kinase JNK3 at a conserved serine residue (Ser-175 in the B isoform and Ser-176 in the A and C isoforms).
View Article and Find Full Text PDFNat Struct Mol Biol
August 2013
Molecular motors are instrumental in mRNA localization, which provides spatial and temporal control of protein expression and function. To obtain mechanistic insight into how a class V myosin transports mRNA, we performed single-molecule in vitro assays on messenger ribonucleoprotein (mRNP) complexes reconstituted from purified proteins and a localizing mRNA found in budding yeast. mRNA is required to form a stable, processive transport complex on actin--an elegant mechanism to ensure that only cargo-bound motors are motile.
View Article and Find Full Text PDFCharacterization of the collective behaviors of different classes of processive motor proteins has become increasingly important to understand various intracellular trafficking and transport processes. This work examines the dynamics of structurally-defined motor complexes containing two myosin Va (myoVa) motors that are linked together via a molecular scaffold formed from a single duplex of DNA. Dynamic changes in the filament-bound configuration of these complexes due to motor binding, stepping, and detachment were monitored by tracking the positions of different color quantum dots that report the position of one head of each myoVa motor on actin.
View Article and Find Full Text PDFMyosin V is an actin-based motor protein involved in intracellular cargo transport [1]. Given this physiological role, it was widely assumed that all class V myosins are processive, able to take multiple steps along actin filaments without dissociating. This notion was challenged when several class V myosins were characterized as nonprocessive in vitro, including Myo2p, the essential class V myosin from S.
View Article and Find Full Text PDFMyo4p, one of two class V myosins in budding yeast, continuously transports messenger RNA (mRNA) cargo in the cell but is nonprocessive when characterized in vitro. The adapter protein She3p tightly binds to the Myo4p rod, forming a single-headed motor complex. In this paper, we show that two Myo4p-She3p motors are recruited by the tetrameric mRNA-binding protein She2p to form a processive double-headed complex.
View Article and Find Full Text PDFDuring secretory events, kinesin transports cargo along microtubules and then shifts control to myosin V for delivery on actin filaments to the cell membrane [1]. When kinesin and myosin V are present on the same cargo, kinesin interacts electrostatically with actin to enhance myosin V-based transport in vitro [2]. The relevance of this observation within the cell was questioned.
View Article and Find Full Text PDFTwo cardiomyopathic mutations were expressed in human cardiac actin, using a Baculovirus/insect cell system; E99K is associated with hypertrophic cardiomyopathy whereas R312H is associated with dilated cardiomyopathy. The hypothesis that the divergent phenotypes of these two cardiomyopathies are associated with fundamental differences in the molecular mechanics and thin filament regulation of the underlying actin mutation was tested using the in vitro motility and laser trap assays. In the presence of troponin (Tn) and tropomyosin (Tm), beta-cardiac myosin moved both E99K and R312H thin filaments at significantly (p<0.
View Article and Find Full Text PDFThe processive motor kinesin-1 moves unidirectionally toward the plus end of microtubules. This process can be visualized by total internal reflection fluorescence microscopy of kinesin bound to a carboxylated quantum dot (Qdot), which acts both as cargo and label. Surprisingly, when kinesin is bound to an anti-HIS Qdot, it shows diffusive movement on microtubules, which decreased in favor of processive runs with increasing salt concentration.
View Article and Find Full Text PDFMyo4p, a single-headed and nonprocessive class V myosin in budding yeast, transports >20 different mRNAs asymmetrically to the bud. Here, we determine the features of the Myo4p motor that are necessary for correct localization of ASH1 mRNA to the daughter cell, a process that also requires the adapter protein She3p and the dimeric mRNA-binding protein She2p. The rod region of Myo4p, but not the globular tail, is essential for correct localization of ASH1 mRNA, confirming that the rod contains the primary binding site for She3p.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2008
Organelle transport to the periphery of the cell involves coordinated transport between the processive motors kinesin and myosin V. Long-range transport takes place on microtubule tracks, whereas final delivery involves shorter actin-based movements. The concept that motors only function on their appropriate track required further investigation with the recent observation that myosin V undergoes a diffusional search on microtubules.
View Article and Find Full Text PDF