The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, utilizes receptor binding domain (RBD) of spike glycoprotein to interact with angiotensin (Ang)-converting enzyme 2 (ACE2). Altering ACE2 levels may affect entry of SARS-CoV-2 and recovery from COVID-19. Decreased cell surface density of ACE2 leads to increased local levels of Ang II and may contribute to mortality resulting from acute lung injury and fibrosis during COVID-19.
View Article and Find Full Text PDFBackground: Human nasal epithelial (HNE) cells can be sampled noninvasively and cultured to provide a model of the airway epithelium that reflects cystic fibrosis (CF) pathophysiology. We hypothesised that measures of HNE cell physiology would correlate directly with measures of lung physiology and therapeutic response, providing a framework for using HNE cells for therapeutic development and precision medicine.
Methods: We sampled nasal cells from participants with CF (CF group, n=26), healthy controls (HC group, n=14) and single CF transmembrane conductance regulator (CFTR) mutation carrier parents of the CF group (CR group, n=16).
SLC26A9, a member of the solute carrier protein family, transports chloride ions across various epithelia. SLC26A9 also associates with other ion channels and transporters linked to human health, and in some cases these heterotypic interactions are essential to support the biogenesis of both proteins. Therefore, understanding how this complex membrane protein is initially folded might provide new therapeutic strategies to overcome deficits in the function of SLC26A9 partners, one of which is associated with Cystic Fibrosis.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2021
Aberrant anion secretion across the bronchial epithelium is associated with airway disease, most notably in cystic fibrosis. Although the cystic fibrosis transmembrane conductance regulator (CFTR) is recognized as the primary source of airway anion secretion, alternative anion transport mechanisms play a contributing role. An alternative anion transporter of growing interest is SLC26A9, a constitutively active chloride channel that has been shown to interact with CFTR and may also contribute to bicarbonate secretion.
View Article and Find Full Text PDFGuanylate cyclase 2C (GC-C), encoded by the GUCY2C gene, is implicated in hereditary early onset chronic diarrhea. Several families with chronic diarrhea symptoms have been identified with autosomal dominant, gain-of-function mutations in GUCY2C. We have identified a Mennonite patient with a novel GUCY2C variant (c.
View Article and Find Full Text PDFCystic fibrosis (CF) disease is caused by mutations affecting the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel expressed in the mucosal side of epithelial tissue. In the airway, dysfunctional CFTR results in a transepithelial osmotic imbalance leading to hyperabsorption of airway surface liquid mucostasis, chronic inflammation, and eventual respiratory failure. Human nasal epithelial cell cultures from healthy and CF donors were used to perform studies of liquid and solute transport dynamics at an air/liquid interface in order to emulate the in vivo airway.
View Article and Find Full Text PDFA pathway for cystic fibrosis transmembrane conductance regulator (CFTR) degradation is initiated by Hsp27, which cooperates with Ubc9 and binds to the common F508del mutant to modify it with SUMO-2/3. These SUMO paralogues form polychains, which are recognized by the ubiquitin ligase, RNF4, for proteosomal degradation. Here, protein array analysis identified the SUMO E3, protein inhibitor of activated STAT 4 (PIAS4), which increased wild-type (WT) and F508del CFTR biogenesis in CFBE airway cells.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2017
Several members of the SLC26A family of anion transporters associate with CFTR, forming complexes in which CFTR and SLC26A functions are reciprocally regulated. These associations are thought to be facilitated by PDZ scaffolding interactions. CFTR has been shown to be positively regulated by NHERF-1, and negatively regulated by CAL in airway epithelia.
View Article and Find Full Text PDFTMEM16A, a Ca -activated Cl channel, contributes to tumor growth in breast cancer and head and neck squamous cell carcinoma (HNSCC). Here, we investigated whether TMEM16A influences the response to EGFR/HER family-targeting biological therapies. Inhibition of TMEM16A Cl channel activity in breast cancer cells with HER2 amplification induced a loss of viability.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
April 2016
Recent studies identified the SLC26A9 Cl(-) channel as a modifier and potential therapeutic target in cystic fibrosis (CF). However, understanding of the regulation of SLC26A9 in epithelia remains limited and cellular models with stable expression for biochemical and functional studies are missing. We, therefore, generated Fisher rat thyroid (FRT) epithelial cells with stable expression of HA-tagged SLC26A9 via retroviral transfection and characterized SLC26A9 expression and function using Western blotting, immunolocalization, whole cell patch-clamp, and transepithelial bioelectric studies in Ussing chambers.
View Article and Find Full Text PDFPurpose: Tumor metastasis is the leading cause of death in patients with cancer. However, the mechanisms that underlie metastatic progression remain unclear. We examined TMEM16A (ANO1) expression as a key factor shifting tumors between growth and metastasis.
View Article and Find Full Text PDFThe epithelial sodium channel (ENaC) is the rate-limiting step for sodium reabsorption across tight epithelia. Cyclic-AMP (cAMP) stimulation promotes ENaC trafficking to the apical surface to increase channel number and transcellular Na(+) transport. Removal of corticosteroid supplementation in a cultured cortical collecting duct cell line reduced ENaC expression.
View Article and Find Full Text PDFFrequent gene amplification of the receptor-activated calcium-dependent chloride channel TMEM16A (TAOS2 or ANO1) has been reported in several malignancies. However, its involvement in human tumorigenesis has not been previously studied. Here, we show a functional role for TMEM16A in tumor growth.
View Article and Find Full Text PDFNumerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane.
View Article and Find Full Text PDFCystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2010
Here, we compared the effects of nucleofection and lipid-based approaches to introduce siRNA duplexes on the subsequent development of membrane polarity in kidney cells. Nucleofection of Madin-Darby canine kidney (MDCK) cells, even with control siRNA duplexes, disrupted the initial surface polarity as well as the steady-state distribution of membrane proteins. Transfection using lipofectamine yielded slightly less efficient knockdown but did not disrupt membrane polarity.
View Article and Find Full Text PDFThe vacuolar H(+)-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V(1) sector of the V-ATPase is phosphorylated by protein kinase A (PKA).
View Article and Find Full Text PDFHuman bronchial epithelial (HBE) cells exhibit constitutive anion secretion that is absent in cells from cystic fibrosis (CF) patients. The identity of this conductance is unknown, but SLC26A9, a member of the SLC26 family of CF transmembrane conductance regulator (CFTR)-interacting transporters, is found in the human airway and exhibits chloride channel behavior. We sought differences in the properties of SLC26A9 and CFTR expressed in HEK 293 (HEK) cells as a fingerprint to identify HBE apical anion conductances.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, DeltaF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2009
The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bronchial epithelial (HBE) cells.
View Article and Find Full Text PDFMutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). The most common mutation, DeltaF508, omits the phenylalanine residue at position 508 in the first nucleotide binding domain (NBD1) of CFTR. The mutant protein is retained in the endoplasmic reticulum and degraded by the ubiquitin-proteasome system.
View Article and Find Full Text PDFThe focus of this review is the regulated trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in distal compartments of the protein secretory pathway and the question of how changes in CFTR cellular distribution may impact on the functions of polarized epithelial cells. We summarize data concerning the cellular localization and activity of CFTR and attempt to synthesize often conflicting results from functional studies of regulated endocytosis and exocytosis in CFTR-expressing cells. In some instances, findings that are inconsistent with regulated CFTR trafficking may result from the use of overexpression systems or nonphysiological experimental conditions.
View Article and Find Full Text PDFCystic fibrosis is a common lethal genetic disease among Caucasians. The cystic fibrosis gene encodes a cyclic adenosine monophosphate-activated chloride channel (cystic fibrosis transmembrane conductance regulator (CFTR)) that mediates electrolyte transport across the luminal surfaces of a variety of epithelial cells. Mutations in CFTR fall into two broad categories; those that affect protein biosynthesis/stability and traffic to the cell surface and those that cause altered channel kinetics in proteins that reach the cell surface.
View Article and Find Full Text PDF