Noise-induced hearing loss (NIHL) is a prevalent health risk. Inbred mouse strains 129S6/SvEvTac (129S6) and MOLF/EiJ (MOLF) show strong NIHL resistance (NR) relative to CBA/CaJ (CBACa). In this study, we developed quantitative trait locus (QTL) maps for NR.
View Article and Find Full Text PDFVoltage-gated K(+) channels (Kv) represent the largest family of genes in the K(+) channel family. The Kv1 subfamily plays an essential role in the initiation and shaping of action potentials, influencing action potential firing patterns and controlling neuronal excitability. Overlapping patterns with differential expression and precise localization of Kv1.
View Article and Find Full Text PDFMutations within MYO7A can lead to recessive and dominant forms of inherited hearing loss. We previously identified a large pedigree (referred to as the HL2 family) with hearing loss that first impacts the low and mid frequencies segregating a dominant MYO7A mutation in exon 17 at DNA residue G2164C. The MYO7A(G2164C) mutation predicts a nonconservative glycine-to-arginine (G722R) amino acid substitution at a highly conserved glycine residue.
View Article and Find Full Text PDFVoltage-gated potassium (Kv) channels containing Kv1.1 subunits are strongly expressed in neurons that fire temporally precise action potentials (APs). In the auditory system, AP timing is used to localize sound sources by integrating interaural differences in time (ITD) and intensity (IID) using sound arriving at both cochleae.
View Article and Find Full Text PDFUsher syndrome is the leading cause of combined deaf-blindness, but the molecular mechanisms underlying the auditory and visual impairment are poorly understood. Usher I is characterized by profound congenital hearing loss, vestibular dysfunction, and progressive retinitis pigmentosa beginning in early adolescence. Using the c.
View Article and Find Full Text PDFGenes Kcna1 and Kcna2 code for the voltage-dependent potassium channel subunits Kv1.1 and Kv1.2, which are coexpressed in large axons and commonly present within the same tetramers.
View Article and Find Full Text PDFVoltage-gated sodium channels (Na(V)) are critical for initiation of action potentials. Heterozygous loss-of-function mutations in Na(V)1.1 channels cause severe myoclonic epilepsy in infancy (SMEI).
View Article and Find Full Text PDFThis article reviews the relationship deficits experienced by many individuals who have attention deficit hyperactivity disorder (ADHD) and proposes effective strategies, based on Imago Relationship Therapy (IRT), to assist them in communicating more effectively. The neurological underpinnings of the disorder often contribute to the development of poor social and communication skills and can lead to a lifetime of relationship difficulties. IRT, a brain-based approach, is compatible with the neurological challenges of living with ADHD because it slows the communication process, provides structure, reduces reactivity, and helps individuals to be fully present so that their loved one can feel fully heard and understood.
View Article and Find Full Text PDFAlthough there is increasing awareness of adverse effects associated with use of the high-fat ketogenic diet, very little is known regarding its long-term clinical consequences, especially in relation to cardiovascular health. Recent reports have highlighted rare but significant cardiac problems in patients treated with the ketogenic diet. Given the inherent limitations in conducting detailed pathologic assessments in patients, we asked whether histologic changes might develop in the brain and skeletal muscle of mice fed a high-fat diet for 2 to 3 months.
View Article and Find Full Text PDFTuberous sclerosis (TSC) is an autosomal dominant disorder, caused by mutations of either the TSC1 or TSC2 gene. Characteristic brain pathologies (including cortical tubers and subependymal hamartomas/giant astrocytomas) are thought to cause epilepsy, as well as other neurological dysfunction. The Eker rat, which carries a spontaneous germline mutation of the TSC2 gene (TSC2+/-), provides a unique animal model in which to study the relationship between TSC cortical pathologies and epilepsy.
View Article and Find Full Text PDF