Background And Purpose: During diabetes, expression of inducible nitric oxide synthase (iNOS) plays an important role in the development of endothelial dysfunction in extracranial blood vessels. Progression of vascular dysfunction after the onset of diabetes differs among vascular beds. In this study, the effects of hyperglycemia/diabetes on vasomotor function were examined in cerebral arterioles at 2 different times in control and iNOS-deficient mice and compared with the effects on carotid arteries.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2005
We tested the hypotheses that 1) systemic IL-10, after adenoviral gene transfer, protects arteries from impaired relaxation produced by LPS; 2) local expression of IL-10 within the arterial wall protects against vasomotor dysfunction after LPS; and 3) IL-10 protects against vascular dysfunction mediated by inducible NO synthase (iNOS) after LPS. In IL-10-deficient (IL-10-/-) and wild-type (WT, IL-10+/+) mice, LPS in vivo impaired relaxation of arteries to acetylcholine and gene transfer of IL-10 improved responses to acetylcholine. Superoxide levels were elevated in arteries after LPS, and increased levels of superoxide were prevented by gene transfer of IL-10.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2005
Oxidative stress is associated with endothelial dysfunction in heart failure. The goals of this study were to determine whether 1) gene transfer of extracellular superoxide dismutase (ecSOD) reduces levels of superoxide and improves endothelial function in the aorta and mesenteric artery in rats with heart failure, and 2) the heparin-binding domain (HBD) of ecSOD, by which ecSOD binds to cells, is required for protective effects of ecSOD. Seven weeks after coronary ligation, in rats with heart failure and sham-operated rats, we injected adenoviral vectors intravenously that express ecSOD, ecSOD with deletion of the HBD (ecSODDeltaHBD), or a control vector.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2004
Lipopolysaccharide (LPS) impairs vascular function, in part by generation of reactive oxygen species. One goal of this study was to determine whether gene transfer of extracellular SOD (ECSOD) improves vascular responsiveness in LPS-treated rats. A second goal was to determine whether effects of ECSOD are dependent on the heparin-binding domain of the enzyme, which facilitates binding of ECSOD to the outside of cells.
View Article and Find Full Text PDFBackground And Purpose: Inducible nitric oxide synthase (iNOS) is a mediator of vascular dysfunction during inflammation. The purpose of this study was to test the hypothesis that vascular dysfunction during diabetes is dependent on expression of iNOS.
Methods: Diabetes was produced in mice with streptozotocin (150 mg/kg IP).
The goal of this study was to evaluate for evidence of oxidative stress in colonic inflammation in a novel model of inflammatory bowel disease, nonsteroidal anti-inflammatory drug- (NSAID-) treated interleukin-10-deficient (IL10(-/-)) mice. IL10(-/-) and wild-type (wt) mice were treated with a nonselective NSAID (piroxicam, 200 ppm in the diet) for 2 weeks to induce colitis, and parameters for oxidative stress in the colonic tissues were evaluated. Mean chemiluminescence enhanced with lucigenin in the colons from IL10(-/-) mice treated with piroxicam was more than 5-fold higher than that of the control wt group.
View Article and Find Full Text PDFInterleukin (IL)-10, an anti-inflammatory cytokine, preserves endothelial function during acute inflammation. We tested the hypotheses that IL-10 plays a protective role in blood vessels during diabetes by suppressing impairment of endothelium-dependent relaxation and that protection by IL-10 is mediated by effects on superoxide (O(2-)). Streptozotocin (150 mg/kg i.
View Article and Find Full Text PDFGene transfer technology provides valuable tools for the study of vascular biology. By using gene transfer, effects of specific gene products can be evaluated in a highly selective manner. In recent years, techniques used for gene transfer have been adapted for applications to blood vessels, including microvessels, both in vitro and in vivo.
View Article and Find Full Text PDF