The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination.
View Article and Find Full Text PDFSelective megaspore abortion (monomegaspory) probably arose once in seed plants and occurs routinely in more than 70% of angiosperm species, representing one of the key characters of a heterosporous life history. In contrast, selective microspore abortion leading to pollen dispersal as pseudomonads (here termed monomicrospory) apparently arose at least twice independently within angiosperms, though it occurs in a limited number of taxa. Remarkably, similar examples of monomicrospory occur in members of two distantly related angiosperm families: the sedge family (Cyperaceae) and the epacrid subfamily (Styphelioideae) of the eudicot family Ericaceae.
View Article and Find Full Text PDFThis paper presents the first broad overview of three main features of microsporogenesis (male meiosis) in angiosperms: cytokinesis (cell division), intersporal wall formation, and tetrad form. A phylogenetic comparative approach was used to test for correlated evolution among these characters and to make hypotheses about evolutionary trends in microsporogenesis. The link between features of microsporogenesis and pollen aperture type was examined.
View Article and Find Full Text PDFThis paper presents the first record of silica deposits in tissues of Haemodoraceae and adds new records of tapetal raphides in this family. Within the order Commelinales, silica is present in leaves of three families (Hanguanacaeae, Haemodoraceae and Commelinaceae), but entirely absent from the other two (Pontederiaceae and Philydraceae). Presence or absence of characteristic cell inclusions may have systematic potential in commelinid monocotyledons, although the existing topology indicates de novo gains and losses in individual families.
View Article and Find Full Text PDFCyperaceae are the third largest monocotyledon family, with considerable economic and conservation importance. In subfamily Mapanioideae there is particular specialization of the inflorescence into units termed spicoids. The structural homology of the spicoid is difficult to interpret, making determination of intrafamilial relationships problematic.
View Article and Find Full Text PDF