Inadequate blood supply to the expanding adipose tissue (AT) is involved in the unhealthy AT remodeling and cardiometabolic consequences of obesity. Because of the pathophysiological role of upregulated mineralocorticoid receptor (MR) signaling in the complications of obesity, this study tested the vasoactive properties of finerenone, a nonsteroidal MR antagonist, in arteries of human AT. Arteries isolated from the visceral AT of obese subjects were studied in a wire myograph.
View Article and Find Full Text PDFClin Sci (Lond)
May 2024
The 18th International Conference on Endothelin, co-organized by the International Advisory Board (IAB) on Endothelin and the Fondazione Internazionale Menarini, was held in Rome, Italy, on October 11th-14th, 2023. More than 100 attendees from all over the world participated in the conference, including trainees, early-career and established investigators from several European countries (Italy, France, Switzerland, Sweden, the Netherlands, Belgium, the United Kingdom (UK), Germany, the Czech Republic), USA, Canada, Japan, Australia, Brazil, China, Taiwan, and Indonesia.
View Article and Find Full Text PDFThe endothelin family of peptides has long been recognized as a physiological regulator of diverse biological functions and mechanistically involved in various disease states, encompassing, among others, the cardiovascular system, the kidney, and the nervous system. Pharmacological blockade of the endothelin system, however, has encountered strong obstacles in its entry into the clinical mainstream, having obtained only a few proven indications until recently. This translational gap has been attributable predominantly to the relevant side effects associated with endothelin receptor antagonism (ERA), particularly fluid retention.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) are two of the four major chronic non-communicable diseases (NCDs) representing the leading cause of death worldwide. Several studies demonstrate that endothelial dysfunction (ED) plays a central role in the pathogenesis of these chronic diseases. Although it is well known that systemic chronic inflammation and oxidative stress are primarily involved in the development of ED, recent studies have shown that perivascular adipose tissue (PVAT) is implicated in its pathogenesis, also contributing to the progression of atherosclerosis and to insulin resistance (IR).
View Article and Find Full Text PDFBackground: Obesity is linked with heightened cardiovascular risk, especially when accompanied by metabolic abnormalities. Lipocalin (LCN) 2 and retinol-binding protein (RBP) 4, two members of the lipocalin family, may be upregulated in insulin resistance and atherosclerosis. We analyzed whether changes in circulating LCN2 and RBP4 in obese individuals relate with impaired vasodilator reactivity, an early stage in atherosclerosis.
View Article and Find Full Text PDFAim: As inadequate perfusion has emerged as a key determinant of adipose tissue dysfunction in obesity, interest has grown regarding possible pharmacological interventions to prevent this process. Mirabegron has proved to improve insulin sensitivity and glucose homeostasis in obese humans via stimulation of β-adrenoceptors which also seem to mediate endothelium-dependent vasodilation in disparate human vascular beds. We characterized, therefore, the vasomotor function of mirabegron in human adipose tissue arteries and the underlying mechanisms.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
December 2021
Human obesity is associated with insulin resistance and often results in a number of metabolic abnormalities and cardiovascular complications. Over the past decades, substantial advances in the understanding of the cellular and molecular pathophysiological pathways underlying the obesity-related vascular dysfunction have facilitated better identification of several players participating in this abnormality. However, the complex interplay between the disparate mechanisms involved has not yet been fully elucidated.
View Article and Find Full Text PDFObesity associates with premature atherosclerosis and an increased burden of cardiovascular disease, especially when accompanied by abnormalities of lipid and glucose metabolism. Angiopoietin-like (ANGPTL)3 and ANGPTL4 are metabolic regulators, whose upregulation is associated with dyslipidemia, insulin resistance and atherosclerosis. We analyzed, therefore, changes in circulating ANGPTL3 and ANGPTL4 in obese patients with different metabolic phenotypes and their relation with impaired vasodilator reactivity, an early abnormality in atherosclerosis.
View Article and Find Full Text PDFMetabolic syndrome is a cluster of the most dangerous cardiovascular (CV) risk factors including visceral obesity, insulin resistance, hyperglycemia, alterations in lipid metabolism and arterial hypertension (AH). In particular, AH plays a key role in the complications associated with metabolic syndrome. High salt intake is a well-known risk factor for AH and CV diseases.
View Article and Find Full Text PDFIn the past few decades, obesity has reached pandemic proportions. Obesity is among the main risk factors for cardiovascular diseases, since chronic fat accumulation leads to dysfunction in vascular endothelium and to a precocious arterial stiffness. So far, not all the mechanisms linking adipose tissue and vascular reactivity have been explained.
View Article and Find Full Text PDFFlavonoids display a broad range of structures and are responsible for the major organoleptic characteristics of plant-derived foods and beverages. Recent data showed their activity, and in particular of luteolin-7-O-glucoside (LUT-7G), in reduction of oxidative stress and inflammatory mechanisms in different physiological systems. In this paper, we tried to elucidate how LUT-7G could exert both antioxidant and anti-inflammatory effects in endothelial cells cultured in vitro.
View Article and Find Full Text PDFAs novel drug treatments for diabetes have shown favorable cardiovascular effects, interest has mounted with regard to their possible vascular actions, particularly in relation to visceral adipose tissue perfusion and remodeling in obesity. The present study tested the vasorelaxing effect of the SGLT2 (sodium-glucose transporter type 2) inhibitor canagliflozin in arteries from visceral adipose tissue of either nonobese or obese humans and investigated the underlying mechanisms. Also, the vasorelaxing effect of canagliflozin and the GLP-1 (glucagon-like peptide 1) agonist liraglutide were compared in arteries from obese patients.
View Article and Find Full Text PDFAdrenocortical oncocytomas are rare and mostly nonfunctioning neoplasms. We report the case of a 27-year-old woman diagnosed with an ACTH-independent Cushing's syndrome due to left adrenal oncocytoma. She underwent laparoscopic adrenalectomy.
View Article and Find Full Text PDFActivation of the vascular endothelin-1 (ET-1) system is a key abnormality in vascular dysfunction of human obesity, especially in patients developing complications, such as the metabolic syndrome, diabetes, and atherosclerosis. Vascular insulin resistance, an increased insulin-stimulated endothelial production of ET-1 combined with impaired nitric oxide availability, is the hallmark of obesity-related vasculopathy, but dysregulated adipokine release from obese adipose tissue may contribute to the predominance of ET-1-dependent vasoconstriction. ET-1, in turn, might determine unhealthy obese adipose tissue expansion, with visceral and perivascular adipose tissue changes driving the release of inflammatory cytokines and atherogenic chemokines.
View Article and Find Full Text PDFA 65-year-old Italian physician affected by Familial Mediterranean fever (FMF) was hospitalized due to progressive abdominal enlargement, which had begun 6 months before admission. Physical examination revealed ascites and bilateral leg edema. Abdominal CT scan showed ascitic fluid and extensive multiple peritoneal implants; peritoneal CT-guided biopsy revealed an epithelial-type malignant mesothelioma.
View Article and Find Full Text PDFActivation of fractalkine and other chemokines plays an important role in atherogenesis and, in conjunction with endothelial dysfunction, promotes premature vascular damage in obesity and diabetes. We hypothesized that increased circulating fractalkine coexists with impaired vasomotor function in metabolically healthy or unhealthy obesity, and that treatment with antidiabetic drugs may impact these abnormalities in type 2 diabetes. Compared to lean subjects, in both obese groups the vasodilator responses to acetylcholine and sodium nitroprusside were impaired (both P < .
View Article and Find Full Text PDFVascular aging in obesity and type 2 diabetes (T2D) is associated with progressive vascular calcification, an independent predictor of morbidity and mortality. Pathways for vascular calcification modulate bone matrix deposition, thus regulating calcium deposits. We investigated the association between biomarkers of vascular calcification and vasodilator function in obesity or T2D, and whether antidiabetic therapies favorably impact those markers.
View Article and Find Full Text PDFBackground: The prevalence and degree of obesity is rising worldwide, increases cardiovascular risk, modifies body composition and organ function, and potentially affects the pharmacokinetics and/or pharmacodynamics of drugs.
Objectives: To investigate the pharmacodynamics of once-daily low-dose aspirin in healthy obese subjects, and to assess whether body weight (BW) and body mass index (BMI) affect the pharmacology of aspirin.
Patients/methods: Otherwise healthy, obese (BMI > 30 kg/m ) subjects were studied before and after 3-4 weeks of 100-mg once-daily aspirin intake.
Int J Immunopathol Pharmacol
March 2019
Metabolic diseases are chronic disorders correlated to a greater risk of cardiovascular event and death. Recently, many data have sustained the biological link between microvascular dysfunction, oxidative stress, vascular inflammation, and metabolic diseases. The determination of new and specific blood biomarkers of vascular inflammation associated with obesity-related metabolic syndrome (MetS) and diabetes such as lipoprotein-associated phospholipase A (Lp-PLA) could be useful to identify subject with high risk of cardiovascular events.
View Article and Find Full Text PDFObesity represents one of the most complex public health challenges and has recently reached epidemic proportions. Obesity is also considered to be primarily responsible for the rising prevalence of metabolic syndrome, defined as the coexistence in the same individual of several risk factors for atherosclerosis, including dyslipidemia, hypertension and hyperglycemia, as well as for cancer. Additionally, the presence of three of the five risk factors (abdominal obesity, low high-density lipoprotein cholesterol, high triglycerides, high fasting glucose and high blood pressure) characterizes metabolic syndrome, which has serious clinical consequences.
View Article and Find Full Text PDFObese patients have vascular dysfunction related to impaired insulin-stimulated vasodilation and increased endothelin-1-mediated vasoconstriction. In contrast to the harmful vascular actions of angiotensin (Ang) II, the angiotensin-converting enzyme 2 product Ang-(1-7) has shown to exert cardiovascular and metabolic benefits in experimental models through stimulation of the Mas receptor. We, therefore, examined the effects of exogenous Ang-(1-7) on vasodilator tone and endothelin-1-dependent vasoconstriction in obese patients.
View Article and Find Full Text PDFPatients with central obesity have impaired insulin-stimulated vasodilation and increased ET-1 (endothelin 1) vasoconstriction, which may contribute to insulin resistance and vascular damage. Apelin enhances insulin sensitivity and glucose disposal but also acts as a nitric oxide (NO)-dependent vasodilator and a counter-regulator of AT (angiotensin [Ang] II type 1) receptor-induced vasoconstriction. We, therefore, examined the effects of exogenous (Pyr)apelin on NO-mediated vasodilation and Ang II- or ET-1-dependent vasoconstrictor tone in obese patients.
View Article and Find Full Text PDFObese patients have impaired vasodilator reactivity and increased endothelin 1 (ET-1)-mediated vasoconstriction, two abnormalities contributing to vascular dysfunction. Obestatin, a product of the ghrelin gene, in addition to favorable effects on glucose and lipid metabolism, has shown nitric oxide (NO)-dependent vasodilator properties in experimental models. Given these premises, we compared the effects of exogenous obestatin on forearm flow in lean and obese subjects and assessed its influence on ET-1-dependent vasoconstrictor tone in obesity.
View Article and Find Full Text PDF