Publications by authors named "Carmien Tolmie"

We report the crystal structure of the copper-containing nitrite reductase (NirK) from the Gram-negative bacterium Sinorhizobium meliloti 2011 (Sm), together with complex structural alignment and docking studies with both non-cognate and the physiologically related pseudoazurins, SmPaz1 and SmPaz2, respectively. S. meliloti is a rhizobacterium used for the formulation of Medicago sativa bionoculants, and SmNirK plays a key role in this symbiosis through the denitrification pathway.

View Article and Find Full Text PDF

Aflatoxins are carcinogenic mycotoxins that are produced by the filamentous fungus , a contaminant of numerous food crops. Aflatoxins are synthesised via the aflatoxin biosynthesis pathway, with the enzymes involved encoded by the aflatoxin biosynthesis gene cluster. MoxY is a type I Baeyer⁻Villiger monooxygenase (BVMO), responsible for the conversion of hydroxyversicolorone (HVN) and versicolorone (VN) to versiconal hemiacetal acetate (VHA) and versiconol acetate (VOAc), respectively.

View Article and Find Full Text PDF

Covering: up to end of June 2018 Baeyer-Villiger monooxygenases (BVMOs) are flavin-dependent enzymes that catalyse the oxidation of ketones and cyclic ketones to esters and lactones, respectively, by using molecular oxygen and NAD(P)H. BVMOs also catalyse sulfoxidations and N-oxidations. BVMOs are widely studied as attractive biocatalysts, but also catalyse key reactions in metabolic pathways of the organisms from which they are sourced.

View Article and Find Full Text PDF

We investigated Baeyer-Villiger monooxygenase (BVMO)-mediated synthesis of alkyl formate esters, which are important flavor and fragrance products. A recombinant fungal BVMO from Aspergillus flavus was found to transform a selection of aliphatic aldehydes into alkyl formates with high regioselectivity. Near complete conversion of 10 mm octanal was achieved within 8 h with a regiomeric excess of ∼80 %.

View Article and Find Full Text PDF

Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that convert ketones to esters. Due to their high regio-, stereo- and enantioselectivity and ability to catalyse these reactions under mild conditions, they have gained interest as alternatives to chemical Baeyer-Villiger catalysts. Despite their widespread occurrence within the fungal kingdom, most of the currently characterized BVMOs are from bacterial origin.

View Article and Find Full Text PDF