Environ Sci Pollut Res Int
October 2024
This paper reports a comprehensive study of Theobroma cacao pericarp (TCP) residues, which has been prepared, characterized, and tested as an inexpensive and efficient biosorbent of Cr(VI) from aqueous solutions. The maximum adsorption capacity of TCP obtained at optimal conditions (pH = 2, dose = 0.5 g L, C = 100 mg L) was q = 48.
View Article and Find Full Text PDFagro-industrial waste (WTC) has been characterized and tested as an effective biosorbent to remove Cd(II) from aqueous media. At the optimum pH of 5.0, a maximum adsorption capacity of q = 58.
View Article and Find Full Text PDFIn this study, cladodes of (OFIC), chemically modified with NaOH (OFICM), have been prepared, characterized, and tested as an effective biomass to remove Pb(II) and/or Cd(II) from aqueous media. At an optimum pH of 4.5, the adsorption capacity, q, of treated OFICM was almost four times higher than that of untreated OFIC.
View Article and Find Full Text PDFArabica-coffee and Theobroma-cocoa agroindustrial wastes were treated with NaOH and characterized to efficiently remove Pb(II) from the aqueous media. The maximum Pb(II) adsorption capacities, qmax, of Arabica-coffee (WCAM) and Theobroma-cocoa (WCTM) biosorbents (qmax = 303.0 and 223.
View Article and Find Full Text PDFA new biosorbent based on Nostoc commune (NC) cyanobacteria, chemically modified with NaOH (NCM), has been prepared, characterized and tested as an effective biomass to remove Pb(II) in aqueous media. The adsorption capacity of NCM was determined to be qe = 384.6 mg g−1.
View Article and Find Full Text PDFAgro-industrial waste biosorbents of arabica-coffee (WCA) and theobroma-cocoa (WCT) have been characterized and tested to remove Pb(II) from aqueous media. The maximum adsorption capacity of WCA and WCT (q = 158.7 and 123.
View Article and Find Full Text PDF