Publications by authors named "Carmen-Mariana Aanei"

Background: Embryonic antigens (EA) regulate pluripotency, self-renewal, and differentiation in embryonic stem (ES) cells during their development. In adult somatic cells, EA expression is normally inhibited; however, EAs can be re-expressed by cancer cells and are involved in the deregulation of different signaling pathways (SPs). In the context of AML, data concerning the expression of EAs are scarce and contradictory.

View Article and Find Full Text PDF

Background And Objective: Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder for which diagnosis is typically straightforward, based on bone marrow morphology and flow cytometry (FC) or immunohistochemistry. Nevertheless, variants present atypical expressions of cell surface markers, as is the case of CD5, for which the differential diagnosis can be more difficult. The aim of the current paper was to describe diagnosis of HCL with atypical CD5 expression, with an emphasis on FC.

View Article and Find Full Text PDF

Introduction: Natural killer (NK) cells are key anti-tumor effectors of the innate immunity. Phenotypic differences allow us to discriminate in between three functional stages of maturation, named immature, mature and hypermature that are distinctive in terms of receptor expression, cytokine secretion, cytotoxic properties and organ trafficking. NKs display an impressive repertoire of highly polymorphic germline encoded receptors that can be either activating, triggering the effector's function, or inhibitory, limiting the immune response.

View Article and Find Full Text PDF

Flowcytometric analysis allows for detailed identification and characterization of large numbers of cells in blood, bone marrow, and other body fluids and tissue samples and therefore contributes to the diagnostics of hematological malignancies. Novel data analysis tools allow for multidimensional analysis and comparison of patient samples with reference databases of normal, reactive, and/or leukemia/lymphoma patient samples. Building such reference databases requires strict quality assessment (QA) procedures.

View Article and Find Full Text PDF

Acute myeloid leukemias (AMLs) are hematologic malignancies with varied molecular and immunophenotypic profiles, making them difficult to diagnose and classify. High-dimensional analysis algorithms might increase the utility of multicolor flow cytometry for AML diagnosis and follow-up. The objective of the present study was to assess whether a Compass database-guided analysis can be used to achieve rapid and accurate diagnoses.

View Article and Find Full Text PDF

Acute myeloid leukemias (AMLs) are a group of hematologic malignancies that are heterogeneous in their molecular and immunophenotypic profiles. Identification of the immunophenotypic differences between AML blasts and normal myeloid hematopoietic precursors (myHPCs) is a prerequisite to achieving better performance in AML measurable residual disease follow-ups. In the present study, we applied high-dimensional analysis algorithms provided by the Infinicyt 2.

View Article and Find Full Text PDF

Natural killer (NK) cells are key innate immunity effectors that play a major role in malignant cell destruction. Based on expression patterns of CD16, CD56, CD57, and CD94, three distinct NK cell maturation stages have been described, which differ in terms of cytokine secretion, tissue migration, and the ability to kill target cells. Our study addressed NK cell maturation in bone marrow under three conditions: a normal developmental environment, during pre-leukemic state (myelodysplastic syndrome, MDS), and during leukemic transformation (acute myeloblastic leukemia, AML).

View Article and Find Full Text PDF

Precise classification of acute leukemia (AL) is crucial for adequate treatment. EuroFlow has previously designed an AL orientation tube (ALOT) to guide toward the relevant classification panel and final diagnosis. In this study, we designed and validated an algorithm for automated (database-supported) gating and identification (AGI tool) of cell subsets within samples stained with ALOT.

View Article and Find Full Text PDF

Emerging evidence indicates that in myelodysplastic syndromes (MDS), the bone marrow (BM) microenvironment may also contribute to the ineffective, malignant haematopoiesis in addition to the intrinsic abnormalities of haematopoietic stem precursor cells (HSPCs). The BM microenvironment influences malignant haematopoiesis through indirect mechanisms, but the processes by which the BM microenvironment directly contributes to MDS initiation and progression have not yet been elucidated. Our previous data showed that BM-derived stromal cells (BMSCs) from MDS patients have an abnormal expression of focal adhesion kinase (FAK).

View Article and Find Full Text PDF

Suspicion of myelodysplastic syndromes (MDS) is one of the commonest reasons for bone marrow aspirate in elderly patients presenting with persistent peripheral blood (PB) cytopenia of unclear etiology. A PB assay that accurately rules out MDS would have major benefits. The diagnostic accuracy of the intra-individual robust coefficient of variation (RCV) for neutrophil myeloperoxidase (MPO) expression measured by flow cytometric analysis in PB was evaluated in a retrospective derivation study (44 MDS cases and 44 controls) and a prospective validation study (68 consecutive patients with suspected MDS).

View Article and Find Full Text PDF

Intermittent parathyroid hormone (iPTH) is anti-osteoporotic and affects bone vessels. Transitional capillaries close to the bone surface, which express both endomucin (Edm) and CD31, bear leptin receptor-expressing (LepR) perivascular cells that may differentiate into osteoblasts. Increased numbers of type H endothelial cells (THEC; ie, Edm /CD31 cells assessed by flow cytometry, FACS) are associated with higher bone formation in young mice.

View Article and Find Full Text PDF

A working group initiated within the French Cytometry Association (AFC) was developed in order to harmonize the application of multiparameter flow cytometry (MFC) for myeloid disease diagnosis in France. The protocol presented here was agreed-upon and applied between September 2013 and November 2015 in six French diagnostic laboratories (University Hospitals of Saint-Etienne, Grenoble, Clermont-Ferrand, Nice, and Lille and Institut Paoli-Calmettes in Marseille) and allowed the standardization of bone marrow sample preparation and data acquisition. Three maturation databases were developed for neutrophil, monocytic, and erythroid lineages with bone marrow from "healthy" donor individuals (individuals without any evidence of a hematopoietic disease).

View Article and Find Full Text PDF

Myelodysplastic syndromes are a heterogeneous group of clonal hematopoietic disorders. However, the therapies used against the hematopoietic stem cells clones have limited efficacy; they slow the evolution toward acute myeloid leukemia rather than stop clonal evolution and eradicate the disease. The progress made in recent years regarding the role of the bone marrow microenvironment in disease evolution may contribute to progress in this area.

View Article and Find Full Text PDF

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm, characterized by persistent monocytosis and dysplasia in at least one myeloid cell lineage. This persistent monocytosis should be distinguished from the reactive monocytosis which is sometimes observed in a context of infections or solid tumors. In 2015, Selimoglu-Buet et al.

View Article and Find Full Text PDF

In this study, we evaluated the effects of epigallocatechin-3-O-gallate (EGCG) in two cancer cell lines, A-431 overexpressing ErbB1 and SK-BR-3, overexpressing ErbB2. EGCG treatment showed dose-dependent collapse of mitochondrial membrane potential (Δψ), increase in reactive oxygen species (ROS) production, changes in nuclear morphology and reduced viability. Flow cytometry data indicated that EGCG partially decreases the phosphorylation of several proteins involved in cell proliferation and survival: pErbB1(Y1173, Y1068), pAkt(S473) and pERK(Y204).

View Article and Find Full Text PDF

Embryonic stem cells typically show properties of long-term self-renewal and lack of differentiation. When appropriately stimulated, they are able to differentiate into all cell lineages, and lose their self-renewal characteristics. These properties are controlled by a series of genes encoding several transcription factors, including OCT4, the product of POU5F1 gene.

View Article and Find Full Text PDF

The pathogenic role of mesenchymal stromal cells (MSCs) in myelodysplastic syndromes (MDS) development and progression has been investigated by numerous studies, yet, it remains controversial in some aspects (1, 2). In the present study, we found distinct features of MSCs from low-risk (LR)-MDS stromal microenvironment as compared to those from healthy subjects. At the molecular level, focal adhesion kinase, a key tyrosine kinase in control of cell proliferation, survival, and adhesion process, was found profoundly suppressed in expression and activation in LR-MDS MSC.

View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) is fueled by leukemic stem cells, which show unique traits like self-renewal and expression of embryonic genes compared to normal blood stem cells.
  • The study focused on the expression of specific embryonic antigens (OCT4, NANOG, SOX2, SSEA1, SSEA3) in normal and AML hematopoietic stem cell subsets, revealing that OCT4 and SOX2 were elevated in leukemic cells, while SSEA1 was reduced.
  • Despite higher levels of SOX2 being linked to better survival rates among AML patients, the expression of these markers did not appear to affect treatment outcomes or remission
View Article and Find Full Text PDF

Myelodysplastic syndromes (MDSs) are clonal disorders of hematopoiesis that exhibit heterogeneous clinical presentation and morphological findings, which complicates diagnosis, especially in early stages. Recently, refined definitions and standards in the diagnosis and treatment of MDS were proposed, but numerous questions remain. Multiparameter flow cytometry (MFC) is a helpful tool for the diagnostic workup of patients with suspected MDS, and various scores using MFC data have been developed.

View Article and Find Full Text PDF

Myelodysplastic syndromes are characterized by a high risk of evolution into acute myeloid leukaemia which can involve activation of signalling pathways. As the chaperone heat shock protein 90 (HSP90) has a key role in signal transduction, we investigated its role in the pathogenesis and evolution of myelodysplastic syndromes. Expressions of HSP90 and signalling proteins clients (phosphorylated-AKT (pAKT), Focal Adhesion Kinase (FAK) and phosphorylated-FAK (pFAK)), were assessed in bone marrow mononuclear and CD34-positive (CD34+) cells from 177 patients with myelodysplasia.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDSs) are clonal disorders of hematopoietic stem cells (HSCs) characterized by ineffective hematopoiesis. MDSs are responsible for 1 or several peripheral cytopenias. The evidence accumulated in recent years demonstrates that in addition to HSC defects, a particular role is also played by stromal microenvironment dysfunctions, which mediate the direct contact with hematopoietic precursor cells (HPCs).

View Article and Find Full Text PDF

Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y(397)], and HSP90α/β and p130CAS, and analysed for reactivity, intensity and cellular localisation.

View Article and Find Full Text PDF