Publications by authors named "Carmen van den Berg"

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity.

View Article and Find Full Text PDF

spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules.

View Article and Find Full Text PDF

Loxosceles spiders' venoms consist of a mixture of proteins, including the sphingomyelinases D (SMases D), which are the main toxic components responsible for local and systemic effects in human envenomation. Herein, based on the structural information of SMase D from Loxosceles laeta spider venom and virtual docking-based screening approach, three benzene sulphonate compounds (named 1, 5 and 6) were identified as potential Loxosceles SMase D inhibitors. All compounds inhibited the hydrolysis of the sphingomyelin substrate by both recombinant and native SMases D.

View Article and Find Full Text PDF

snake venom causes systemic thrombotic syndrome but also local inflammation involving extensive oedema, pain, and haemorrhage. Systemic thrombotic syndrome may lead to fatal pulmonary embolism and myocardial and cerebral infarction. Here, we investigated the ability of venom to activate the Complement system (C) in order to improve the understanding of venom-induced local inflammation.

View Article and Find Full Text PDF

Envenomation by Loxosceles spiders can result in severe systemic and local reactions, which are mainly triggered by Sphingomyelinase D (SMase D), a toxic component of Loxosceles venom. SMase D induces a systemic inflammatory condition similar to the reaction observed during an endotoxic shock. Considering the potent pro-inflammatory potential of Loxosceles venom and the SMase D, in this study we have used the whole human blood model to study the endotoxic-like shock triggered by SMase D.

View Article and Find Full Text PDF

Envenomation by spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D) is the main component in spider venom responsible for local and systemic manifestations.

View Article and Find Full Text PDF

Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified a spider complement component homologue named Lox-FB from Loxosceles laeta, using various RNA extraction and amplification techniques.
  • * Lox-FB exhibits significant similarities in structure to vertebrate and invertebrate FB/C2 proteins, featuring important domains, but lacks some conserved amino acids typically found in related proteins.
View Article and Find Full Text PDF

Loxoscelism is caused by envenomation by spiders from Loxosceles genus. Clinical symptoms only appear a few hours after envenomation and can evolve in local reactions, such as dermonecrosis, and systemic reactions, including intravascular haemolysis, intravascular coagulation and renal failure. Considering that alterations in the microcirculatory network are involved in the pathogenesis of different diseases, including the inflammatory process, the aim of this study was to investigate the action of venoms of males and females of Loxosceles intermedia and Loxosceles laeta on the microcirculatory network and examine the systemic production of inflammatory mediators in a murine model of loxoscelism.

View Article and Find Full Text PDF

Background: The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called "Pararamose", characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs.

View Article and Find Full Text PDF

Complement is implicated in the pathogenesis of rheumatoid arthritis (RA); elevated levels of complement activation products have been measured in plasma, synovial fluid, and synovial tissues of patients. Complement polymorphisms are associated with RA in genome-wide association studies. Coding-region polymorphisms may directly impact protein activity; indeed, we have shown that complement polymorphisms affecting a single amino acid change cause subtle changes in individual component function that in combination have dramatic effects on complement activity and disease risk.

View Article and Find Full Text PDF

Nature is a wealthy source of agents that have been shown to be beneficial to human health, but nature is also a rich source of potential dangerous health damaging compounds. This review will summarise and discuss the agents from the animal kingdom that have been shown to interact with the human complement (C) system. Most of these agents are toxins found in animal venoms and animal secretions.

View Article and Find Full Text PDF

Neutrophil dysfunction, resulting in inefficient bacterial clearance, is a feature of several serious medical conditions, including cystic fibrosis (CF) and sepsis. Poorly controlled neutrophil serine protease (NSP) activity and complement activation have been implicated in this phenomenon. The capacity for excess NSP secretion and complement activation to influence the expression and function of the important neutrophil-activating receptor C5aR was investigated.

View Article and Find Full Text PDF

Background: Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom.

View Article and Find Full Text PDF

Background: The spider family Sicariidae includes two genera, Sicarius and Loxosceles. Bites by Sicarius are uncommon in humans and, in Brazil, a single report is known of a 17-year old man bitten by a Sicarius species that developed a necrotic lesion similar to that caused by Loxosceles. Envenomation by Loxosceles spiders can result in dermonecrosis and severe ulceration.

View Article and Find Full Text PDF

Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2.

View Article and Find Full Text PDF

The C5a receptor (C5aR) is a 7 transmembrane G-protein coupled receptor (GPCR) that mediates the powerful pro-inflammatory effect of the complement activation product C5a. Excess C5a generated under pathological conditions has been implicated in a variety of conditions including sepsis, asthma and rheumatoid arthritis, but very little is known about the regulation of expression of the C5aR. The 5' promoter region and 3' untranslated region (UTR) of the C5aR mRNA were cloned, generating enhanced green fluorescent protein (EGFP)-reporter plasmids, which were transfected into the monocytic cell line U937.

View Article and Find Full Text PDF

Background: The caterpillar of the moth Premolis semirufa (Lepidoptera: Arctiidae), commonly named Pararama, is endemic of the Amazon basin. Accidental contact with these caterpillar bristles causes local symptoms such as intense heat, pain, edema and itching which last for three to seven days; however, after multiples contacts, it may induce joint-space narrowing and bone alteration, as well as degeneration of the articular cartilage and immobilization of the affected joints. Specific treatment for this disease does not exist, but corticosteroids are frequently administered.

View Article and Find Full Text PDF

Neutrophils are involved in numerous pathologies and are considered to be major contributors to the establishment of cutaneous loxoscelism after envenomation by the Loxosceles spider. Neutrophils are attracted to the site of envenomation by locally generated C5a and contribute to the tissue destruction. We have investigated the effects of this spider venom on the receptor for C5a: C5aR/CD88, a seven transmembrane G-protein coupled receptor.

View Article and Find Full Text PDF

Background: The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity.

View Article and Find Full Text PDF

We have investigated the role of the 3'untranslated region (3'UTR) in the expression of decay accelerating factor (DAF), one of the major membrane regulators of Complement activation. We show here that the 3'UTR of DAF contains an adenylate uridine rich element (ARE) AUUUAUUUAUAUUUAUUUA, which belongs to Class II Cluster 4 of the AU-rich element-containing mRNA (ARED) database. Enhanced Green Fluorescent Protein (EGFP) Reporter constructs containing the DAF 3'UTR showed reduced levels of expression when transfected into a variety of cell lines compared to 3'UTR reporter constructs without the ARE sequence.

View Article and Find Full Text PDF
Article Synopsis
  • Snake venoms, particularly from the genus Bothrops, are responsible for most snakebites in Central and South America, causing severe local and systemic effects, including potential permanent disabilities.
  • This study examined how venoms from 19 Bothrops species in Brazil affect the complement system, revealing that these venoms can activate the classical complement pathway without prior antibody sensitization.
  • The activation of the complement system by Bothrops venoms leads to the production of inflammatory molecules, which could exacerbate the effects of envenomation and facilitate the spread of other harmful venom components in the human body.
View Article and Find Full Text PDF

Loxoscelism is caused by envenomation by spiders from Loxosceles genus. Clinical symptoms only appear a few hours after envenomation and can evolve in local reactions, such as dermonecrosis, and systemic reactions, such as intravascular haemolysis, intravascular coagulation and renal failure. Current therapies are not effective, often not based in scientific research and can be even detrimental.

View Article and Find Full Text PDF

Sphingomyelinase D (SMase D) present in the venoms of Loxosceles spiders is the principal component responsible for local and systemic effects observed in the loxoscelism. By using "expressed sequencing tag", it was possible to identify, in a L. laeta venom gland library, clones containing inserts coding for proteins with similarity to SMase D.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6akqi9th5tk62hhvvvodgdtb9042dp3c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once