Publications by authors named "Carmen Urbaneja"

We report a series of organometallic nickel and palladium complexes containing iminophosphine ligands R2PCH2C(Ph) = N-Dipp (Dipp = 2,6-diisopropylphenyl; R = iPr, La; R = Ph, Lb; and R = o-C6H4OMe, Lc), synthesized by ligand exchange or oxidative addition reactions, and we investigate the capacity of such ligands to undergo reversible deprotonation to the corresponding phosphinoenaminato species. In the attempted ligand exchange reaction of the nickel bis(trimethylsilyl)methyl precursor [Ni(CH2SiMe3)2Py2] with Lb, the iminophosphine acts as a weak acid rather than a neutral ligand, cleaving one of the Ni-C bonds, to afford the phosphinoenaminato complex [Ni(CH2SiMe3)(L'b)(Py)] (L'b = conjugate base of Lb). We disclose a general method for the syntheses of complexes [Ni(CH2SiMe3)(L)(Py)]+ (L = La, Lb or Lc), and demonstrate that iminophosphine deprotonation is a general feature and occurs reversibly in the coordination sphere of the metal.

View Article and Find Full Text PDF

The first complexes containing imidazolium-2-amidinates as ligands (betaine-type adducts of imidazolium-based carbenes and carbodiimides, NHC-CDI) are reported. Interaction of the sterically hindered betaines ICyCDI(DiPP) and IMeCDI(DiPP) [both bearing 2,6-diisopropylphenyl (DiPP) substituents on the terminal N atoms] with Cu(I) acetate affords mononuclear, electroneutral complexes 1a and 1b, which contain NHC-CDI and acetate ligands terminally bound to linear Cu(I) centers. In contrast, the less encumbered ligand ICyCDI(p-Tol), with p-tolyl substituents on the nitrogen donor atoms, affords a dicationic trigonal paddlewheel complex, [Cu2(μ-ICyCDI(p-Tol))3](2+)[OAc(-)]2 (2-OAc).

View Article and Find Full Text PDF

Heterometallic aluminium-lithium species were prepared by the fragmentation reaction of the hexametallic cage compound [Li{2,6-(MeO)(2)C(6)H(3)O}](6) (1) with alkyl aluminium derivatives. Depending on the aluminium precursor, the species formed present different nuclearities in the solid state as shown by single crystal X-ray analysis. Spectroscopic and computational studies have been performed to study the nuclearity of the synthesized compounds in solution.

View Article and Find Full Text PDF