Publications by authors named "Carmen Tiseanu"

Lanthanide (Ln) co-doped transition metal (TM) upconversion (UC) co-doped systems are being intensively investigated for their exciting applications in photonics, bioimaging, and luminescence thermometry. The presence of TM, such as Mo6 + /W6 +, Mn2 +, or Fe3 + determines significant changes in Ln UC emission, such as intensity enhancement, colour modulation, and even the alteration of the photon order. The current mechanism assumes a ground-state absorption/excited-state absorption (ESA/GSA) in TM-Yb dimer followed by direct energy transfer to Er/Tm excited states.

View Article and Find Full Text PDF

A molecular precursor approach to titania (anatase) nanopowders modified with different amounts of rare-earth elements (REEs: Eu, Sm, and Y) was developed using the interaction of REE nitrates with titanium alkoxides by a two-step solvothermal-combustion method. The nature of an emerging intermetallic intermediate was revealed unexpectedly for the applied conditions via a single-crystal study of the isolated bimetallic isopropoxide nitrate complex [TiY(PrO)(NO)], a nonoxo-substituted compound. Powders of the final reaction products were characterized by powder X-ray diffraction, scanning electron microscopy-energy-dispersive spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence (PL).

View Article and Find Full Text PDF

Three 1D coordination polymers with benzoate bridges have been assembled in the presence of 18-crown-6-ether (18C6): 1∞[Tb(PhCOO)3(H2O)(EtOH)]·0.5(18C6) 1, 1∞[Eu(PhCOO)3(H2O)2]·0.5(18C6) 2, 1∞[Nd(PhCOO)3(H2O)2]·0.

View Article and Find Full Text PDF

In recent years, luminescence nanothermometers with near infrared light (NIR) emission excited in the NIR range have attracted much attention due to their potential in bio applications. Here, we propose a new nanothermometer based on triple doped 1%Ho, 1%Er, 1%Yb - YO that operates in the second and third biological windows around 1200 and 1530 nm under pulsed excitation at 905 nm. The NIR emissions were analysed in the temperature range of 298-473 K in terms of intensity, shape and dynamics.

View Article and Find Full Text PDF

Technologically relevant tetragonal/cubic phases of HfO can be stabilized at room temperature by doping with trivalent rare earths using various approaches denoted generically as bulk coprecipitation. Using in situ/ex situ X-ray diffraction (XRD), Raman spectroscopy, high-resolution transmission electron microscopy, and in situ/ex situ site-selective, time-gated luminescence spectroscopy, we show that wet impregnation of hafnia nanoparticles with 10% Eu oxide followed by mild calcination in air at 500 °C produces an efficient stabilization of the cubic phase, comparable to that obtained by bulk precipitation. The physical reasons behind the apparently conflictual data concerning the actual crystallographic phase and the local symmetry around the Eu stabilizer and how these can be mediated by luminescence analysis are also discussed.

View Article and Find Full Text PDF

Correlating dopant distribution to its optical response represents a complex challenge for nanomaterials science. Differentiating the "true" clustering nature from dopant pairs formed in statistical distribution complicates even more the elucidation of doping-functionality relationship. The present study associates lanthanide dopant distribution, including all significant events (enrichment, depletion and surface segregation), to its optical response in upconversion (UPC) at the ensemble and single-nanoparticle level.

View Article and Find Full Text PDF

Three isostrucutral dodecanuclear clusters with the general formula [Ln12(fsa)12(μf3-OH)12(DMF)12]·nDMF (fsa2- is the dianion of 3-formylsalicylic acid; Ln = Eu 1, Gd 2, Dy 3) have been obtained from the reaction of fromylsalicyclic acid (H2fsa), tetrabutylammonium hydroxide and Ln(NO3)3·6H2O in methanol/DMF. Their structure consists of four vertex-sharing heterocubanes. Each heterocubane unit is assembled from four LnIII ions, three μ3-OH groups and one μ3-oxygen atom arising from the fsa2- carboxylato group.

View Article and Find Full Text PDF

In the recent years, there is an extensive effort concentrated towards the development of nanoparticles with near-infrared emission within the so called second or third biological windows induced by excitation outside 800-1000 nm range corresponding to the traditional Nd (800 nm) and Yb (980 nm) sensitizers. Here, we present a first report on the near-infrared (900-1700 nm) emission of significant member of cubic sesquioxides, Er-LuO nanoparticles, measured under both near-infrared up-conversion and low energy X-ray excitations. The nanoparticle compositions are optimized by varying Er concentration and Li addition.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that adding 10% and 20% Europium oxide (EuO) to ZrO₂ nanoparticles through wet impregnation followed by heating helps achieve a stable tetragonal phase without separating different phases.
  • The ZrO₂ nanoparticles were created using three different methods, and their uniformity was checked with various advanced techniques.
  • The study indicates that wet impregnation is effective for creating well-mixed doped oxides, and it discusses the challenges in detecting small phase differences and how dopant amounts affect the solid solution's stability.
View Article and Find Full Text PDF

To avoid the deleterious effects of dopant segregation, synthesis methods that facilitate a homogenous dopant distribution in the ceria lattice were employed. Though doping ceria by wet impregnation was also credited to induce a homogeneous solid solution even in the heavy regime (concentration ≥20%, A. Corma, P.

View Article and Find Full Text PDF

Herein, we present a first report on the luminescence thermometry properties of Er, Yb doped GdOS microparticles under near infrared up-conversion excitation at 980 and 1500 nm measured in the 280-800 K interval. The thermometry properties are assessed using both cw and ns pulsed excitation as well as tuning the excitation wavelength across Yb and Er absorption profiles. For low cw (300 mW cm) and pulsed ns (400 ÷ 550 mW cm) excitation modes, no thermal load is observed.

View Article and Find Full Text PDF

Despite considerable research, the location of an aliovalent dopant into SnO nanoparticles is far to be clarified. The aim of the present study on trivalent lanthanide doped SnO is to differentiate between substitutional versus interstitial and surface versus bulk doping, delineate the bulk and surface defects induced by doping and establish an intrinsic dopant distribution. We evidence for the first time a complex distribution of intrinsic nature composed of substitutional isolated, substitutional associates with defects as well as surface centers.

View Article and Find Full Text PDF

Binuclear complexes with general formula [Ln(hfac)(HO)(dppnTEMPO)] (Ln = Gd, Tb, and Dy) have been obtained using the paramagnetic ligand 1-piperidinyl-4-[(diphenylphosphinyl)amino]-2,2,6,6-tetramethyl (dppnTEMPO) as a bridge. One of the lanthanide ions is ferromagnetically coupled with the TEMPO moiety. Two of the complexes (Dy and Tb) show slow relaxation of the magnetization, and the non-magneto-equivalence of the two Ln ions was clearly observed.

View Article and Find Full Text PDF

We investigate the effects of heterovalent co-dopants on the structural and emission properties of 1% Er-CeO2 nanoparticles. The CeO2 oxide host was selected on the basis of its fairly well-understood defect chemistry in either a pure or doped state. As a luminescent activator, Er is acknowledged as an interesting element due to its rich luminescence and excitation properties spanning the visible to near-infrared range.

View Article and Find Full Text PDF

Herein, we report on the pure and almost pure near-infrared (NIR) emission at around 807 nm observed for Tm(Yb) (co)-doped CeO2 nanoparticles (NPs) under UV, X-ray and NIR up-conversion excitation. The optical responses are attributed to the low-lying charge-transfer of CeO2 that acts as a selective antenna sensitizer of the Tm (3)H4 emission and Yb doping that lowers the local symmetry at Tm sites and introduces additional phonon modes. Selective antenna sensitization is also observed for Er/Ho (Yb) (co)-doped CeO2 NPs.

View Article and Find Full Text PDF

The atomic scale homogeneity of Ce and Zr oxygen bonds represents the main reason for enhanced total oxygen storage capability of CeO2-ZrO2 (Ce/Zr = 1) as compared to that of CeO2. Here, we demonstrate that the addition of 10% Eu(3+) by wet impregnation on preformed nanosized CeO2-ZrO2 (Ce/Zr = 1) followed by calcination induces a remarkable homogeneity of 10% Eu(3+)-CeO2-ZrO2 solid solution. By use of time-resolved emission and excitation spectroscopies, the improvement of the nanoscale chemical and structural homogeneity of 10% Eu(3+)-CeO2-ZrO2 calcined at 1000 as compared to sample calcined at 750 °C is demonstrated.

View Article and Find Full Text PDF

The syntheses, structural investigations, magnetic and photophysical properties of a series of 10 lanthanide mononuclear complexes, containing the heteroditopic ligand cyanomethylene-bis(5,5-dimethyl-2-oxo-1,3,2λ(5)-dioxa-phosphorinane) (L), are described. The crystallographic analyses indicate two structural types: in the first one, [Ln(III)(L)3(H2O)2]·H2O (Ln = La, Pr, Nd), the metal ions are eight-coordinated within a square antiprism geometry, while the second one, [Ln(III)(L)3(H2O)]·8H2O (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er), contains seven-coordinated Ln(III) ions within distorted monocapped trigonal prisms. Intermolecular hydrogen bonding between nitrogen atoms of the cyano groups, crystallization, and coordination water molecules leads to the formation of extended supramolecular networks.

View Article and Find Full Text PDF

We report on structure-property relationships in Pr-doped CeO2 and ZrO2 using X-ray diffraction (XRD), Raman, UV to Vis Diffuse Reflectance (DR-UV/Vis), X-ray Photoelectron (XPS), and luminescence (PL) spectroscopies. Both 3+ and 4+ valence states of Pr are evidenced, irrespective of the host and calcination temperature, T (T = 500 and 1000 °C) with consequences on absorption, surface, vibrational and luminescence properties. Only zirconia represents a suitable host for Pr(3+) luminescence.

View Article and Find Full Text PDF

Although homogeneity at the atomic level of CeO2-ZrO2 with a Ce/Zr atomic ratio close to unity is considered to be one of the main causes for the increased total oxygen storage capacity (OSC), the characterization approaches of homogeneity remain a major challenge. We propose a simple, yet effective method, to assess both structural and compositional homogeneity of CeO2-ZrO2 by using Eu(3+) luminescence measured with time and dual spectral resolution (emission and excitation). For Eu(3+)-CeO2-ZrO2 calcined at 750 °C, the X-ray diffraction, Raman and High-Resolution Transmission Electron Microscopy data converge to a single pseudo-cubic phase.

View Article and Find Full Text PDF

Uniformly mesoporous and thermally robust anatase nanorods were produced with quantitative yield by a simple and efficient one-step approach. The mechanism of this process was revealed by insertion of Eu(3+) cations from the reaction medium as luminescent probes. The obtained structure displays an unusually high porosity, an active surface area of about 300 m(2) g(-1) and a specific capacity of 167 mA h g(-1) at a C/3 rate, making it attractive as an anode electrode for Li-ion batteries.

View Article and Find Full Text PDF

Pure and europium (Eu(3+)) doped ZrO(2) synthesized by an oil-in-water microemulsion reaction method were investigated by in situ and ex situ X-ray diffraction (XRD), ex situ Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), steady state and time-resolved photoluminescence (PL) spectroscopies. Based on the Raman spectra excited at three different wavelengths i.e.

View Article and Find Full Text PDF

Heterobimetallic [Zn(II)Ln(III)] complexes have been obtained using a compartmental Schiff-base ligand, H(2)valdmpn, resulting from the 2:1 condensation between o-vanillin and 2,2-dimethyl-propilenediamine: [Zn(H(2)O)(valdmpn)Sm(O(2)NO)(3)] 1, [Zn(H(2)O)(valdmpn)Tb(O(2)NO)(3)] 2a, [Zn(H(2)O)(valdmpn)Tb(O(2)NO)(3)]·H(2)O 2b, and [Zn(H(2)O)(valdmpn)Gd(O(2)NO)(3)]·H(2)O 3. The crystal structures of 1, 2b, and 3 have been solved. Compounds 1 and 2a crystallize in a non-centrosymmetric space group (P2(1)2(1)2(1)), being isomorphous.

View Article and Find Full Text PDF

Pure and europium (Eu(3+)) doped cerium dioxide (CeO(2)) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of ~250 m(2) g(-1).

View Article and Find Full Text PDF

Herein, we report the synthesis, structural investigation, and magnetic and photophysical properties of a series of 13 [Zn(II)Ln(III)] heterodinuclear complexes, which have been obtained employing a Schiff-base compartmental ligand derived from o-vanillin [H(2)valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)]. The complexes have been synthesized starting from the [Zn(valpn)(H(2)O)] mononuclear compound and the corresponding lanthanide nitrates. The crystallographic investigation indicated two structural types: the first one, [Zn(H(2)O)(valpn)Ln(III)(O(2)NO)(3)], contains 10-coordinated Ln(III) ions, while in the second one, [Zn(ONO(2))(valpn)Ln(III)(H(2)O)(O(2)NO)(2)]·2H(2)O, the rare earth ions are nine-coordinated.

View Article and Find Full Text PDF

Zeolites NaY and ZSM-5 were used as hosts for styrene polymerization after ion-exchange with europium ions. The parent and hybrid, polystyrene coated Eu-NaY (Eu-NaY/PS) and Eu-ZSM-5 (Eu-ZSM-5/PS) zeolites were investigated by using thermal analysis, SEM, PXRD, FT-IR, DR-UV/Vis, steady state and time-resolved photoluminescence spectroscopy. FT-IR spectra evidenced for the interaction between the zeolitic hosts and polystyrene while the PXRD spectra supported for the presence of the polymer inside the channels/pores of Eu-NaY/PS and Eu-ZSM-5/PS materials.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionudgt11c5av8ekfcmi17kevi6o5mda6mo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once