Objectives: E-cigarettes are the most commonly used nicotine containing products among youth. In vitro studies support the potential for e-cigarettes to cause cellular stress in vivo; however, there have been no studies to address whether exposure to e-liquid aerosols can induce cell transformation, a process strongly associated with pre-malignancy. We examined whether weekly exposure of human bronchial epithelial cell (HBEC) lines to e-cigarette aerosols would induce transformation and concomitant changes in gene expression and promoter hypermethylation.
View Article and Find Full Text PDFEpidemiology studies link cigarillos and shisha tobacco (delivered through a hookah waterpipe) to increased risk for cardiopulmonary diseases. Here we performed a comparative chemical constituent analysis between 3 cigarettes, 3 cigarillos, and 8 shisha tobacco products. The potency for genotoxicity and oxidative stress of each product's generated total particulate matter (TPM) was also assessed using immortalized oral, lung, and cardiac cell lines to represent target tissues.
View Article and Find Full Text PDFBackground: Trimethylation of lysine 27 and dimethylation of lysine 9 of histone-H3 catalyzed by the histone methyltransferases EZH2 and G9a impede gene transcription in cancer. Our human bronchial epithelial (HBEC) pre-malignancy model studied the role of these histone modifications in transformation. Tobacco carcinogen transformed HBEC lines were characterized for cytosine DNA methylation, transcriptome reprogramming, and the effect of inhibiting EZH2 and G9a on the transformed phenotype.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Background: The role of lung epithelial cells in HIV-1-related lung comorbidities remains unclear, and the major hurdle in curing HIV is the persistence of latent HIV reservoirs in people living with HIV (PLWH). The advent of combined antiretroviral therapy has considerably increased the life span; however, the incidence of chronic lung diseases is significantly higher among PLWH. Lung epithelial cells orchestrate the respiratory immune responses and whether these cells are productively infected by HIV-1 is debatable.
View Article and Find Full Text PDFElectronic cigarettes are the most commonly used nicotine containing product among teenagers. The oral epithelium is the first site of exposure and our recent work revealed considerable diversity among e-liquids for composition and level of chemical constituents that impact nicotine deposition in a human oral-trachea cast and affect the formation of reactive carbonyls. Here, we evaluate the dose response for cytotoxicity and genotoxicity of e-cigarette-generated aerosols from 10 diverse flavored e-liquid products with and without nicotine compared with unflavored in 3 immortalized oral epithelial cell lines.
View Article and Find Full Text PDFIntroduction: The diversity of e-liquids along with higher powered e-cigarette nicotine delivery devices are increasing. This study evaluated the effect of voltage and e-liquid composition on particle size, nicotine deposition in a human oral-trachea cast model and generation of carbonyls.
Methods: Nineteen e-liquids were evaluated for 30 common chemicals by gas chromatography-mass spectrometry (GC-MS).
Background: Epigenetic therapy through demethylation of 5-methylcytosine has been largely ineffective in treating lung cancer, most likely due to poor tissue distribution with oral or subcutaneous delivery of drugs such as 5-azacytidine (5AZA). An inhalable, stable dry powder formulation of 5AZA was developed.
Methods: Pharmacokinetics of inhaled dry powder and aqueous formulations of 5AZA were compared to an injected formulation.
The expression of DNA-dependent protein kinase catalytic subunit (DNA-PKc) is highly variable in smokers and reduced enzyme activity has been associated with risk for lung cancer. An in vitro model of lung pre-malignancy was used to evaluate the role of double-strand break DNA repair capacity in transformation of hTERT/CDK4 immortalized human bronchial epithelial cells (HBECs) and reprograming of the epigenome. Here we show that knockdown of DNA-PKc to levels simulating haploinsufficiency dramatically reduced DNA repair capacity following challenge with bleomycin and significantly increased transformation efficiency of HBEC lines exposed weekly for 12 weeks to this radiomimetic.
View Article and Find Full Text PDFThe role of transcriptional regulator ten-eleven translocation methylcytosine dioxygenease 1 (TET1) has not been well characterized in lung cancer. Here we show that TET1 is overexpressed in adenocarcinoma and squamous cell carcinomas. TET1 knockdown reduced cell growth and and induced transcriptome reprogramming independent of its demethylating activity to affect key cancer signaling pathways.
View Article and Find Full Text PDFAltered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR.
View Article and Find Full Text PDFmiRNA silencing by promoter hypermethylation may represent a mechanism by which lung cancer develops and progresses, but the miRNAs involved during malignant transformation are unknown. We previously established a model of premalignant lung cancer wherein we treated human bronchial epithelial cells (HBEC) with low doses of tobacco carcinogens. Here, we demonstrate that next-generation sequencing of carcinogen-transformed HBECs treated with the demethylating agent 5-aza-2'deoxycytidine revealed miR-196b and miR-34c-5p to be epigenetic targets.
View Article and Find Full Text PDFO(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that protects cells from carcinogenic effects of alkylating agents; however, MGMT is silenced by promoter hypermethylation during carcinogenesis. A single-nucleotide polymorphism (SNP) in an enhancer in the MGMT promoter was previously identified to be highly significantly associated with risk for MGMT methylation in lung cancer and sputum from smokers. To further genetic investigations, a genome-wide association and replication study was conducted in two smoker cohorts to identify novel loci for MGMT methylation in sputum that were independent of the MGMT enhancer polymorphism.
View Article and Find Full Text PDFIntroduction: GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small-cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear.
Methods: GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs.
The DNA methyltransferase (DNMT) inhibitor vidaza (5-Azacytidine) in combination with the histone deacetylase inhibitor entinostat has shown promise in treating lung cancer and this has been replicated in our orthotopic lung cancer model. However, the effectiveness of DNMT inhibitors against solid tumors is likely impacted by their limited stability and rapid inactivation by cytidine deaminase (CDA) in the liver. These studies were initiated to test the efficacy of SGI-110, a dinucleotide containing decitabine that is resistant to deamination by CDA, as a single agent and in combination with entinostat.
View Article and Find Full Text PDFLung cancer in never smokers (NS) shows striking demographic, clinicopathological and molecular distinctions from the disease in smokers (S). Studies on selected genetic and epigenetic alterations in lung cancer identified that the frequency and profile of some abnormalities significantly differ by smoking status. This study compared the transcriptome of lung adenocarcinoma cell lines derived from S (n = 3) and NS (n = 3) each treated with vehicle (control), histone deacetylation inhibitor (trichostatin A) or DNA methylation inhibitor (5-aza-2'-deoxycytidine).
View Article and Find Full Text PDFSmoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium.
View Article and Find Full Text PDFDespite decades of research in defining the health effects of low-dose (<100 mGy) ionizing photon radiation (LDR), the relationship between LDR and human cancer risk remains elusive. Because chemical carcinogens modify the tumor microenvironment, which is critical for cancer development, we investigated the role and mechanism of LDR in modulating the response of stromal cells to chemical carcinogen-induced lung cancer development. Secretion of proinflammatory cytokines such as interleukin-6 (IL-6), CXCL1 and CXCL5 from human lung fibroblasts was induced by cigarette-smoke carcinogen benzo[a]pyrene diol epoxide (BPDE), which was inhibited by a single dose of LDR.
View Article and Find Full Text PDFThe activation of the epithelial-to-mesenchymal transition (EMT) program is an important step for tumor initiation, invasion, and metastasis in solid tumors, including lung cancer. The purpose of this study was to identify the sequence variants in the miR-205/200 family-regulated EMT pathway and test their association with risk for lung cancer. Fifty samples were resequenced to identify sequence variants in the miR-205/200 family-regulated EMT pathway.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) is strongly associated with cancer progression, but its potential role during premalignant development has not been studied. Here, we show that a 4-week exposure of immortalized human bronchial epithelial cells (HBEC) to tobacco carcinogens can induce a persistent, irreversible, and multifaceted dedifferentiation program marked by EMT and the emergence of stem cell-like properties. EMT induction was epigenetically driven, initially by chromatin remodeling through H3K27me3 enrichment and later by ensuing DNA methylation to sustain silencing of tumor-suppressive microRNAs (miRNA), miR-200b, miR-200c, and miR-205, which were implicated in the dedifferentiation program in HBECs and also in primary lung tumors.
View Article and Find Full Text PDFPurpose: To address the association between sequence variants within the MGMT (O(6)-methylguanine-DNA methyltransferase) promoter-enhancer region and methylation of MGMT in premalignant lesions from smokers and lung adenocarcinomas, their biological effects on gene regulation, and targeting MGMT for therapy.
Experimental Design: Single nucleotide polymorphisms (SNP) identified through sequencing a 1.9 kb fragment 5' of MGMT were examined in relation to MGMT methylation in 169 lung adenocarcinomas and 1,731 sputum samples from smokers.
Epigenetic therapy for solid tumors could benefit from an in vivo model that defines tumor characteristics of responsiveness and resistance to facilitate patient selection. Here we report that combining the histone deacetylase inhibitor entinostat with the demethylating agent vidaza profoundly affected growth of K-ras/p53 mutant lung adenocarcinomas engrafted orthotopically in immunocompromised nude rats by targeting and ablating pleomorphic cells that occupied up to 75% of the tumor masses. A similar reduction in tumor burden was seen with epigenetic therapy in K-ras or EGFR mutant tumors growing orthotopically.
View Article and Find Full Text PDFDeath-associated protein kinase (DAPK), a mediator of apoptotic systems, is silenced by promoter hypermethylation in lung and breast tumors. This gene has a CpG island extending 2500 bp from the translational start site; however, studies characterizing its transcriptional regulation have not been conducted. Two transcripts for DAPK were identified that code for a single protein, while being regulated by two promoters.
View Article and Find Full Text PDFA better understanding of key molecular changes during the pathogenesis of melanoma could impact strategies to reduce mortality from this cancer. Two epigenetic events involved in the pathogenesis of cancer are hypermethylation of tumor-suppressor gene promoters associated with transcriptional repression and hypomethylation associated with gene reexpression and genomic instability. We analyzed 16 melanoma cell lines for aberrant hypermethylation of 15 cancer-linked genes (ER alpha, MGMT, RAR beta 2, RIL, RASSF1A, PAX7, PGR beta, PAX2, NKX2-3, OLIG2, HAND1, ECAD, CDH13, MLH1, and p16) and hypomethylation of two genes (MAGEA1, maspin) and two repetitive sequences (LINE-1 and Alu) using pyrosequencing.
View Article and Find Full Text PDFAn abnormal pattern of DNA methylation occurs at specific genes in almost all neoplasms. The lack of high-throughput methods with high specificity and sensitivity to detect changes in DNA methylation has limited its application for clinical profiling. Here we overcome this limitation and present an improved method to identify methylated genes genome-wide by hybridizing a CpG island microarray with amplicons obtained by the methylated CpG island amplification technique (MCAM).
View Article and Find Full Text PDFThe identification of molecular markers of melanoma progression is needed to more accurately stage and identify treatments for patients with malignant melanoma. Previously, we demonstrated that loss of the activator protein-2alpha (AP-2alpha) expression results in overexpression of the protease-activated receptor-1 (PAR-1) in human melanoma cell lines. Here, we used a tissue microarray platform that consisted of 64 melanocytic lesions, including dysplastic nevi (N=21), primary melanoma (N=20), and metastatic melanoma (N=23).
View Article and Find Full Text PDF