Background: Numerous lines of evidence confirm that decidual stromal cells (DSCs) play a key role in maternal-fetal immune tolerance. Under the influence of progesterone and other hormones, the DSCs go through a process of differentiation (decidualization) during normal pregnancy. In mice, DSCs inhibit the expression of chemokines that attract abortigenic Th1 and Tc cells to the decidua.
View Article and Find Full Text PDFBackground: Approximately 13.8% and 6.1% of coronavirus disease 2019 (COVID-19) patients require hospitalization and sometimes intensive care unit (ICU) admission, respectively.
View Article and Find Full Text PDFResearch Question: Are the alterations observed in the endometriotic cells, such as progesterone resistance, already present in the eutopic endometrium or acquired in the ectopic location?
Design: The response to decidualization with progesterone and cyclic AMP for up to 28 days was compared in different endometrial stromal cell (EnSC) lines established from samples of endometriomas (eEnSC), eutopic endometrium from women with endometriosis (eBEnSC), endometrial tissue from healthy women (BEnSC) and menstrual blood from healthy donors (mEnSC).
Results: Usual features of decidualized cells, such as changes in cell morphology and expression of prolactin, were similarly observed in the three types of eutopic EnSC studied, but not in the ectopic cells upon decidualization. Among the phenotypic markers analysed, CD105 was down-regulated under decidualization in all cell types (mEnSC, P = 0.
Human endometrial and decidual stromal cells are the same cells in different environments (nonpregnancy and pregnancy, respectively). Although some authors consider decidual stromal cells to arise solely from the differentiation of endometrial stromal cells, this is a debatable issue given that decidualization processes do not end with the formation of the decidua, as shown by the presence of stromal cells from both the endometrium and decidua in both undifferentiated (nondecidualized) and decidualized states. Furthermore, recent functional and transcriptomic results have shown that there are differences in the decidualization process of endometrial and decidual stromal cells, with the latter having a greater decidualization capacity than the former.
View Article and Find Full Text PDFJ Reprod Immunol
June 2021
Decidual stromal cells (DSCs) are the most abundant cellular component of human decidua and play a central role in maternal-fetal immune tolerance. Antigen phenotyping and functional studies recently confirmed the relationship of DSCs with mesenchymal stem/stromal cells (MSCs) and pericytes, the latter two cell types being closely related or identical. The present study investigated the effect of decidualization, a process of cell differentiation driven by progesterone (P4) and other pregnancy hormones, on the MSC/pericyte characteristics of DSCs.
View Article and Find Full Text PDFEndometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women.
View Article and Find Full Text PDFProgress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues.
View Article and Find Full Text PDFMenstrual blood-derived stromal cells (MenSCs) are emerging as a strong candidate for cell-based therapies due to their immunomodulatory properties. However, their direct impact on innate immune populations remains elusive. Since macrophages play a key role in the onset and development of inflammation, understanding MenSCs implication in the functional properties of these cells is required to refine their clinical effects during the treatment of inflammatory disorders.
View Article and Find Full Text PDFThe experimental determination of the relative biological effectiveness of thermal neutron factors is fundamental in Boron Neutron Capture Therapy. The present values have been obtained while using mixed beams that consist of both neutrons and photons of various energies. A common weighting factor has been used for both thermal and fast neutron doses, although such an approach has been questioned.
View Article and Find Full Text PDFEndometrial stromal cells (EnSCs) and decidual stromal cells (DSCs) originate from fibroblastic precursors located around the vessels of the human nonpregnant endometrium and the pregnant endometrium (decidua), respectively. Under the effect of ovarian or pregnancy hormones, these precursors differentiate (decidualize), changing their morphology and secreting factors that appear to be essential for the normal development of pregnancy. However, the different physiological context - that is, non-pregnancy vs pregnancy - of those precursors (preEnSCs, preDSCs) might affect their phenotype and functions.
View Article and Find Full Text PDFThe cold neutron beam at the PF1b line at the Institut Laue-Langevin (ILL), without fast neutrons and a low contribution of gamma rays, is a very suitable facility to measure cell damage following low-energy neutron irradiation. The biological damage associated with the thermal and the boron doses can be obtained in order to evaluate the relative biological effectiveness (RBE) for Boron Neutron Capture Therapy. Three different experiments were carried out on the A375 melanoma cell line: the first one in a hospital LINAC, to obtain the reference radiation data, and the other two at the ILL, in which the damage to cells with and without boron compounds added was measured.
View Article and Find Full Text PDFThe current methodology for determining the biological effect of Boron Neutron Capture Therapy (BNCT) has recently been questioned, and a more accurate framework based in the photon iso-effective dose has been proposed. In this work we derive a first order approximation to this quantity. The new approach removes the main drawbacks of the current method, being based on new weighting factors which are true constants (dose independent) but which can be evaluated from published data on the existing (dose-dependent) weighting factors.
View Article and Find Full Text PDFStem Cell Res Ther
June 2019
Background: Human decidual stromal cells (DSCs) are involved in the maintenance and development of pregnancy, in which they play a key role in the induction of immunological maternal-fetal tolerance. Precursors of DSCs (preDSCs) are located around the vessels, and based on their antigen phenotype, previous studies suggested a relationship between preDSCs and mesenchymal stromal/stem cells (MSCs). This work aimed to further elucidate the MSC characteristics of preDSCs.
View Article and Find Full Text PDFIn planning treatment for each new patient, radiation oncologists pay attention to the aspects that they control. Thus their attention is usually focused on volume and dose. The dilemma for the physician is how to protract the treatment in a way that maximizes control of the tumor and minimizes normal tissue injury.
View Article and Find Full Text PDFIn response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly delays starvation-induced autophagy.
View Article and Find Full Text PDFPurpose: To examine direct and bystander radiation-induced effects in normal umbilical-cord stromal stem cell (HCSSC) lines and in human cancer cells.
Materials And Methods: The UCSSC lines used in this study were obtained in our laboratory. Two cell lines (UCSSC 35 and UCSSC 37) and two human melanoma skin-cancer cells (A375 and G361) were exposed to ionizing radiation to measure acute radiation-dosage cell-survival curves and radiation-induced bystander cell-death response.
DNA methyltransferase (DNMT)-inhibiting nucleoside analogs reactivate the expression of tumor suppressor genes and apoptosis-related genes silenced by methylation, thus favoring the induction of apoptosis in tumor cells. Moreover, induction of DNA damage seems to contribute to their antitumor effect. However, the apoptotic signaling pathway induced by these demethylating drugs is not well understood.
View Article and Find Full Text PDFAngiotensin II receptor type 1 (AT1) activation leads to vasoconstriction and type 2 receptor (AT2) leads to vasodilation. Atrial natriuretic peptide (ANP) antagonizes the effects of AT1. In human and murine pregnancies, uterine natural killer (uNK) cells closely associate with decidual blood vessels.
View Article and Find Full Text PDFMicrobial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria and have recently been attracting considerable attention from biotechnologists because of their potential applications in many fields, including biomedicine. We have screened the antitumoural activity of a panel of sulphated EPSs produced by a newly discovered species of halophilic bacteria. We found that the novel halophilic bacterium Halomonas stenophila strain B100 produced a heteropolysaccharide that, when oversulphated, exerted antitumoural activity on T cell lines deriving from acute lymphoblastic leukaemia (ALL).
View Article and Find Full Text PDFSeveral combined strategies have been recently proposed to overcome the resistance to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) showed by some tumor cells, thus improving the use of this death ligand in antitumor therapy. However, the molecular mechanisms of the tumor selective activity of TRAIL are not completely understood and hence the effects of the combined therapy on normal cells are unknown. Here, we have studied the resistance of primary T lymphocytes to TRAIL-mediated apoptosis.
View Article and Find Full Text PDFLithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3beta (GSK-3beta). Otherwise, recent studies suggest that sustained GSK-3beta inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents.
View Article and Find Full Text PDFInduction of apoptosis in tumor cells by death receptor activation is a novel therapeutic strategy. However, in systemic antitumor treatments, severe toxic effects have been observed with tumor necrosis factor-alpha (TNF-alpha) and CD95 ligand. TNF-alpha causes a lethal inflammatory response and CD95L produces lethal liver damage.
View Article and Find Full Text PDFTreatment of human breast tumor cells with interferon-gamma (IFN-gamma) elevates caspase-8 expression and sensitizes these cells to death receptor-mediated apoptosis through the increased processing and activation of apical procaspase-8. We have characterized the human caspase-8 gene promoter and studied the transcriptional regulation of caspase-8 gene expression in MCF-7 breast tumor cells treated with IFN-gamma. Our findings show that IFN-gamma induces the up-regulation of caspase-8 mRNA expression through a protein synthesis-dependent mechanism involving the action of the IFN-gamma-inducible transcription factor interferon regulatory factor-1 (IRF-1) and without altering mRNA stability.
View Article and Find Full Text PDFJ Biol Chem
February 2004
Tumor necrosis factor-related apoptosis-inducing ligand receptor 3 (TRAIL-R3) is a decoy receptor for TRAIL, a member of the tumor necrosis factor family. In several cell types decoy receptors inhibit TRAIL-induced apoptosis by binding TRAIL and thus preventing its binding to proapoptotic TRAIL receptors. We studied the regulation of TRAIL-R3 gene expression in breast tumor cells treated with the genotoxic drug doxorubicin (DXR).
View Article and Find Full Text PDF