Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease, as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells, their reprogramming and the subsequent verification of iPSC pluripotency are laborious, manual processes limiting the scale and reproducibility of this technology. Here we describe a modular, robotic platform for iPSC reprogramming enabling automated, high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2014
Background: Induced pluripotent stem cells (iPSCs) derived from patients with neurodegenerative disease generally lack neuropathological confirmation, the gold standard for disease classification and grading of severity. The use of tissue with a definitive neuropathological diagnosis would be an ideal source for iPSCs. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells, and thus was not frozen in the presence of cryoprotectants such as DMSO.
View Article and Find Full Text PDFCurrent methods to derive induced pluripotent stem cell (iPSC) lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes.
View Article and Find Full Text PDF