Recent studies have identified multiple polyadenylation sites in nearly all mammalian genes. Although these are interpreted as evidence for alternative polyadenylation, our knowledge of the underlying mechanisms is still limited. Most studies only consider the immediate surroundings of gene ends, even though experiments have uncovered the involvement of external factors such as splicing.
View Article and Find Full Text PDFAlternative splicing is facilitated by accessory proteins that guide spliceosome subunits to the primary transcript. Many of these splicing factors recognize the RNA polymerase II tail, but SFPQ is a notable exception even though essential for mammalian RNA processing. This study reveals a novel role for Dido3, one of three Dido gene products, in alternative splicing.
View Article and Find Full Text PDFMitosis in metazoans is characterized by abundant phosphorylation of histone H3 and involves the recruitment of condensin complexes to chromatin. The relationship between the 2 phenomena and their respective contributions to chromosome condensation in vivo remain poorly understood. Recent studies have shown that H3T3 phosphorylation decreases binding of histone readers to methylated H3K4 in vitro and is essential to displace the corresponding proteins from mitotic chromatin in vivo.
View Article and Find Full Text PDFHistone post-translational modifications, and specific combinations they create, mediate a wide range of nuclear events. However, the mechanistic bases for recognition of these combinations have not been elucidated. Here, we characterize crosstalk between H3T3 and H3T6 phosphorylation, occurring in mitosis, and H3K4me3, a mark associated with active transcription.
View Article and Find Full Text PDF