JACC Basic Transl Sci
February 2023
Pericytes contract during myocardial ischemia resulting in capillary constriction and no reflow. Reversing pericyte contraction pharmacologically reduces no reflow and infarct size. These findings open up an entire new venue of research aimed at altering pericyte function in myocardial ischemia and infarction.
View Article and Find Full Text PDFObjective: There have been attempts to use therapeutic ultrasound (US) for the treatment of both experimental and clinical stroke. We hypothesized that low-intensity US has direct beneficial effects on the brain independent of cerebral blood flow (CBF) during middle cerebral artery occlusion (MCAO).
Methods: Three groups of mice were studied.
Am J Physiol Heart Circ Physiol
December 2021
The "no reflow" phenomenon, where the coronary artery is patent after treatment of acute myocardial infarction (AMI) but tissue perfusion is not restored, is associated with worse outcome. The mechanism of no reflow is unknown. We hypothesized that pericytes contraction, in an attempt to maintain a constant capillary hydrostatic pressure during reduced coronary perfusion pressure, causes capillary constriction leading to no reflow and that this effect is mediated through the orphan receptor, GPR39, present in pericytes.
View Article and Find Full Text PDFCurr Tissue Microenviron Rep
December 2020
Purpose: The microvascular capillary network is ensheathed by cells called pericytes - a heterogeneous population of mural cells derived from multiple lineages. Pericytes play a multifaceted role in the body, including in vascular structure and permeability, regulation of local blood flow, immune and wound healing functions, induction of angiogenesis, and generation of various progenitor cells. Here, we consider the role of pericytes in capillary de-recruitment, a pathophysiologic phenomenon that is observed following hyperemic stimuli in the presence of a stenosis and attenuates the hyperemic response.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2019
Capillary derecruitment distal to a coronary stenosis is implicated as the mechanism of reversible perfusion defect and potential myocardial ischemia during coronary hyperemia; however, the underlying mechanisms are not defined. We tested whether pericyte constriction underlies capillary derecruitment during hyperemia under conditions of stenosis. In vivo two-photon microscopy (2PM) and optical microangiography (OMAG) were used to measure hyperemia-induced changes in capillary diameter and perfusion in wild-type and pericyte-depleted mice with femoral artery stenosis.
View Article and Find Full Text PDFNitrate (NO) and nitrite (NO) are known to be cardioprotective and to alter energy metabolism NO action results from its conversion to NO by salivary bacteria, but the mechanism(s) by which NO affects metabolism remains obscure. NO may act by -nitrosating protein thiols, thereby altering protein activity. But how this occurs, and the functional importance of -nitrosation sites across the mammalian proteome, remain largely uncharacterized.
View Article and Find Full Text PDFAccurate kinetic modelling using dynamic PET requires knowledge of the tracer concentration in plasma, known as the arterial input function (AIF). AIFs are usually determined by invasive blood sampling, but this is prohibitive in murine studies due to low total blood volumes. As a result of the low spatial resolution of PET, image-derived input functions (IDIFs) must be extracted from left ventricular blood pool (LVBP) ROIs of the mouse heart.
View Article and Find Full Text PDFAims: Recently it has been shown that the mitochondria-targeted S-nitrosothiol MitoSNO protects against acute ischaemia/reperfusion (IR) injury by inhibiting the reactivation of mitochondrial complex I in the first minutes of reperfusion of ischaemic tissue, thereby preventing free radical formation that underlies IR injury. However, it remains unclear how this transient inhibition of mitochondrial complex I-mediated free radicals at reperfusion affects the long-term recovery of the heart following IR injury. Here we determined whether the acute protection by MitoSNO at reperfusion prevented the subsequent development of post-myocardial infarction heart failure.
View Article and Find Full Text PDFRadial acquisitions can suffer from trajectory errors leading to reduced image quality. Here we present a new method of trajectory correction that uses all spokes of a radial acquisition and compare it to an existing method that uses a two-spoke pre-scan calibration. For both methods, estimates of the necessary shifts were made using magnitude or phase data and the performances were compared.
View Article and Find Full Text PDFIn vivo assessment of heart function in mice is important for basic and translational research in cardiology. MRI is an accurate tool for the investigation of the anatomy and function in the preclinical setting; however, the long scan duration limits its usage. We aimed to reduce the acquisition time of cine MRI to 1 min.
View Article and Find Full Text PDFMitochondrial complex I, the primary entry point for electrons into the mitochondrial respiratory chain, is both critical for aerobic respiration and a major source of reactive oxygen species. In the heart, chronic dysfunction driving cardiomyopathy is frequently associated with decreased complex I activity, from both genetic and environmental causes. To examine the functional relationship between complex I disruption and cardiac dysfunction we used an established mouse model of mild and chronic complex I inhibition through heart-specific Ndufs4 gene ablation.
View Article and Find Full Text PDFHeart failure originating from myocardial infarction (MI) is a leading cause of death worldwide. Mouse models of ischaemia and reperfusion injury (I/R) are used to study the effects of novel treatment strategies targeting MI, however staging disease and treatment efficacy is a challenge. Damage and recovery can be assessed on the cellular, tissue or whole-organ scale but these are rarely measured in concert.
View Article and Find Full Text PDFAim: Stimulation of the nitric oxide (NO)--soluble guanylate (sGC)--protein kinase G (PKG) pathway confers protection against acute ischaemia/reperfusion injury, but more chronic effects in reducing post-myocardial infarction (MI) heart failure are less defined. The aim of this study was to not only determine whether the sGC stimulator riociguat reduces infarct size but also whether it protects against the development of post-MI heart failure.
Methods And Results: Mice were subjected to 30 min ischaemia via ligation of the left main coronary artery to induce MI and either placebo or riociguat (1.
Myocardial infarction is one of the leading causes of death in the Western world. The similarity of the mouse heart to the human heart has made it an ideal model for testing novel therapeutic strategies. In vivo magnetic resonance imaging (MRI) gives excellent views of the heart noninvasively with clear anatomical detail, which can be used for accurate functional assessment.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
February 2013
Chronic heart failure, as a result of acute myocardial infarction, is a leading cause of death worldwide. Combining diagnostic imaging modalities may aid the direct assessment of experimental treatments targeting heart failure . Here we present preliminary data using the Cambridge combined FDG PET/MRI imaging system in a mouse model of acute myocardial infarction.
View Article and Find Full Text PDFThe glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2014
Background: The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging.
Scope Of Review: One approach towards achieving this goal is the use of exomarkers.
Oxidative damage from elevated production of reactive oxygen species (ROS) contributes to ischemia-reperfusion injury in myocardial infarction and stroke. The mechanism by which the increase in ROS occurs is not known, and it is unclear how this increase can be prevented. A wide variety of nitric oxide donors and S-nitrosating agents protect the ischemic myocardium from infarction, but the responsible mechanisms are unclear.
View Article and Find Full Text PDFProtein kinase G type I (PKGI) plays a critical role in survival signaling of pre- and postconditioning downstream of cardiac cGMP. However, it is unclear whether PKGI exerts its protective effects in the cardiomyocyte or if other cardiac cell types are involved, and whether nitric oxide (NO) metabolism can target cardiomyocyte mitochondria independently of cGMP/PKGI. We tested whether protection against reperfusion injury by ischemic postconditioning (IPost), soluble guanylyl cyclase (sGC) activation and inhibition, adenosine A(2B) receptor (A(2B)AR) agonist, phosphodiesterase type-5 (PDE-5) inhibitor, or mitochondria-targeted S-nitrosothiol (MitoSNO) was affected by a cardiomyocyte-specific ablation of the PKGI gene in the mouse (CMG-KO).
View Article and Find Full Text PDFPurpose: To demonstrate and validate a late gadolinium enhancement (LGE) imaging protocol, optimized for tissue viability assessment in interventional mouse models of myocardial infarction.
Materials And Methods: The method uses an efficient sampling scheme using multiple slices in a single heartbeat interleaving slice packages between alternate TRs. Sampling multiple slices instead of multiple echoes or multiple k-lines achieves higher SNR efficiency, and images covering the whole heart can be obtained in 3 min.
Protection achieved by ischemic preconditioning is dependent on A(2B) adenosine receptors (A(2B)AR) in rabbit and mouse hearts and, predictably, an A(2B)AR agonist protects them. But it is controversial whether cardiomyocytes themselves actually express A(2B)AR. The present study tested whether A(2B)AR could be demonstrated on rat cardiomyocytes.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2010
Pre- and postconditioning depend on the activation of adenosine receptors (ARs) at the end of the index ischemia. The aim of this study was to determine which receptor subtypes must be activated. In situ mouse hearts underwent 30 min of regional ischemia, followed by 2 h of reperfusion.
View Article and Find Full Text PDFAims: BAY 58-2667 (BAY-58) directly activates soluble guanylyl cyclase without tolerance in a nitric oxide (NO)-independent manner, and its haemodynamic effect is similar to that of nitroglycerin. We tested whether BAY-58 could make both rabbit and rat hearts resistant to infarction when given at the end of an ischaemic insult.
Methods And Results: All hearts were exposed to 30 min regional ischaemia followed by 120-(isolated hearts) or 180-(in situ hearts) min reperfusion.