Background: The human gut microbiome produces and consumes a variety of compounds that interact with the host and impact health. Succinate is of particular interest as it intersects with both host and microbiome metabolism. However, which gut bacteria are most responsible for the consumption of intestinal succinate is poorly understood.
View Article and Find Full Text PDFThe anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber.
View Article and Find Full Text PDFAntibiotic resistance and tolerance are substantial healthcare-related problems, hampering effective treatment of bacterial infections. Mutations in the phosphodiesterase GdpP, which degrades cyclic di-3', 5'-adenosine monophosphate (c-di-AMP), have recently been associated with resistance to beta-lactam antibiotics in clinical isolates. In this study, we show that high c-di-AMP levels decreased the cell size and increased the cell wall thickness in mutant strains.
View Article and Find Full Text PDFThe success of fecal microbiota transplants (FMT) has provided the necessary proof-of-concept for microbiome therapeutics. Yet, feces-based therapies have many associated risks and uncertainties, and hence defined microbial consortia that modify the microbiome in a targeted manner have emerged as a promising safer alternative to FMT. The development of such live biotherapeutic products has important challenges, including the selection of appropriate strains and the controlled production of the consortia at scale.
View Article and Find Full Text PDFIn the time of antimicrobial resistance, phage therapy is frequently suggested as a possible solution for such difficult-to-treat infections. Vancomycin-intermediate Staphylococcus aureus (VISA) remains a relatively rare yet increasing occurrence in the clinic for which phage therapy may be an option. However, the data presented herein suggest a potential cross-resistance mechanism to phage following vancomycin exposure in VISA strains.
View Article and Find Full Text PDFEndolysins are peptidoglycan hydrolases produced at the end of the bacteriophage (phage) replication cycle to lyse the host cell. Endolysins in Gram-positive phages come in a variety of multimodular forms that combine different catalytic and cell wall binding domains. However, the reason why phages adopt endolysins with such complex multidomain architecture is not well understood.
View Article and Find Full Text PDFBacterial membrane vesicle research has so far focused mainly on Gram-negative bacteria. Only recently have Gram-positive bacteria been demonstrated to produce and release extracellular membrane vesicles (MVs) that contribute to bacterial virulence. Although treatment of bacteria with antibiotics is a well-established trigger of bacterial MV formation, the underlying mechanisms are poorly understood.
View Article and Find Full Text PDFStaphylococcus aureus is the leading cause of infective endocarditis (IE). While the role of S. aureus cell-wall associated protein clumping factor A (ClfA) in promoting IE has been already demonstrated, that of the secreted plasma-clotting factors staphylocoagulase (Coa) and von Willebrand factor-binding protein (vWbp) has not yet been elucidated.
View Article and Find Full Text PDFStreptococcus gordonii and related species of oral viridans group streptococci (VGS) are common etiological agents of infective endocarditis (IE). We explored vaccination as a strategy to prevent VGS-IE, using a novel antigen-presenting system based on non-genetically modified Lactococcus lactis displaying vaccinogens on its surface. Hsa and PadA are surface-located S.
View Article and Find Full Text PDF