Options for remediating 1,4-dioxane at groundwater sites are limited due to the physical-chemical properties of this compound. The relevance of natural attenuation processes for 1,4-dioxane was investigated through data from field, lab, and modeling efforts. The objectives were to use multiple lines of evidence for 1,4-dioxane biodegradation to understand the prevalence of this activity and evaluate convergence between lines of evidence.
View Article and Find Full Text PDFMonitored Natural Attenuation (MNA) is a preferred remedy for sites contaminated with 1,4-dioxane due to its low cost and limited environmental impacts compared to active remediation. Having a robust estimate of the rate at which biodegradation occurs is an essential component of assessing MNA. In this study, an assay was developed using C-labeled 1,4-dioxane to measure rate constants for biodegradation based on accumulation of C products.
View Article and Find Full Text PDFA 43 year-old male presented with a relapsing and progressive systemic inflammatory disorder with central nervous system (CNS) involvement. After a two years follow up, he was diagnosed with hemophagocytic lymphohistiocytosis (HLH), based on clinical, laboratory and radiological findings. Treatment was started with anakinra, a recombinant humanised interleukin-1 (IL-1) receptor antagonist.
View Article and Find Full Text PDFThe use of aqueous film-forming foam (AFFF) has resulted in the widespread occurrence of per- and polyfluoroalkyl substances (PFAS) in groundwater, drinking water, soils, sediments, and receiving waters throughout the United States and other countries. We present the research and development efforts to date by the Strategic Environmental Research and Development Program (SERDP) and the Environmental Security Technology Certification Program (ESTCP) to measure PFAS in the environment, characterize AFFF-associated sources of PFAS, understand PFAS fate and behavior in the environment, assess the risk to ecological receptors, develop in situ and ex situ treatment technologies for groundwater, treat soils and investigation-derived wastes, and examine the ecotoxicity of PFAS-free fire suppression formulations. Environ Toxicol Chem 2021;40:24-36.
View Article and Find Full Text PDFEnviron Sci Technol
September 2014
Contemporary microbial monitoring of aquifers relies on groundwater samples to enumerate nonattached cells of interest. One-dimensional column studies quantified the distribution of bacterial cells in solid and the aqueous phases as a function of microbial species, growth substrate availability and porous medium (i.e.
View Article and Find Full Text PDFDehalococcoides mccartyi (Dhc) strains are keystone bacteria for reductive dechlorination of chlorinated ethenes to nontoxic ethene in contaminated aquifers. Enumeration of Dhc biomarker genes using quantitative real-time PCR (qPCR) in groundwater is a key component of site assessment and bioremediation monitoring. Unfortunately, standardized qPCR procedures that recognize impaired measurements due to PCR inhibition, low template DNA concentrations, or analytical error are not available, thus limiting confidence in qPCR data.
View Article and Find Full Text PDFChlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often released as dense nonaqueous phase liquids (DNAPLs). These contaminants are difficult to remediate, particularly their source zones. This review summarizes the progress made in improving DNAPL source zone remediation over the past decade, and is structured to highlight the important practical lessons learned for improving DNAPL source zone remediation.
View Article and Find Full Text PDFA combination of batch and column experiments evaluated the mass transfer of two candidate partitioning electron donors (PEDs), n-hexanol (nHex) and n-butyl acetate (nBA), for enhanced bioremediation of trichloroethene (TCE)-dense nonaqueous phase liquid (DNAPL). Completely mixed batch reactor experiments yielded equilibrium TCE-DNAPL and water partition coefficients (KNW) for nHex and nBA of 21.7 ± 0.
View Article and Find Full Text PDFBiostimulation and bioaugmentation have emerged as constructive remedies for chlorinated ethene-contaminated aquifers, and a link between Dehalococcoides (Dhc) bacteria and chlorinated ethene detoxification has been established. To quantify Dhc biomarker genes, groundwater samples are shipped to analytical laboratories where biomass is collected on membrane filters by vacuum filtration for DNA extraction and quantitative real-time PCR analysis. This common practice was compared with a straightforward, on-site filtration approach to Sterivex cartridges.
View Article and Find Full Text PDFTo transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.
View Article and Find Full Text PDFA bench-scale study was performed to evaluate the enhancement of tetrachloroethene (PCE) dissolution from a dense nonaqueous phase liquid (DNAPL) source zone due to reductive dechlorination. The study was conducted in a pair of two-dimensional bench-scale aquifer systems using soil and groundwater from Dover Air Force Base, DE. After establishment of PCE source zones in each aquifer system, one was biostimulated (addition of electron donor) while the other was biostimulated and then bioaugmented with the KB1 dechlorinating culture.
View Article and Find Full Text PDFRecirculating well pairs are a proven means of implementing bioremediation and may also be useful for applying other in situ ground water remediation technologies. A bromide tracer test was performed to characterize the hydraulic performance of a recirculating well pair installed at Moffett Field, California. In particular, we estimate two important properties of the recirculating well pair: (1) the fraction of captured water that is recycled between the wells, and (2) the travel-time distribution of ground water in the induced zone of recirculation.
View Article and Find Full Text PDF