Publications by authors named "Carmen Infante-Duarte"

Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo.

View Article and Find Full Text PDF

During neuroinflammation, monocytes that infiltrate the central nervous system (CNS) may contribute to regenerative processes depending on their activation status. However, the extent and mechanisms of monocyte-induced CNS repair in patients with neuroinflammatory diseases remain largely unknown, partly due to the lack of a fully human assay platform that can recapitulate monocyte-neural stem cell interactions within the CNS microenvironment. We therefore developed a human model system to assess the impact of monocytic factors on neural stem cells, establishing a high-content compatible assay for screening monocyte-induced neural stem cell proliferation and differentiation.

View Article and Find Full Text PDF

Chronic neuroinflammation is characterized by increased blood-brain barrier (BBB) permeability, leading to molecular changes in the central nervous system that can be explored with biomarkers of active neuroinflammatory processes. Magnetic resonance imaging (MRI) has contributed to detecting lesions and permeability of the BBB. Ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents to improve MRI observations.

View Article and Find Full Text PDF

In multiple sclerosis (MS), mitochondrial alterations appear to contribute to disease progression. The sphingosine-1-phosphate receptor modulator siponimod is approved for treating secondary progressive MS. Its preceding compound fingolimod was shown to prevent oxidative stress-induced alterations in mitochondrial morphology.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

It remains uncertain how brain glycosaminoglycans (GAGs) contribute to the progression of inflammatory disorders like multiple sclerosis (MS). We investigated here neuroinflammation-mediated changes in GAG composition and metabolism using the mouse model of experimental autoimmune encephalomyelitis (EAE) and sham-immunized mice as controls. Cerebellum, mid- and forebrain at different EAE phases were investigated using gene expression analysis (microarray and RT-qPCR) as well as HPLC quantification of CS and hyaluronic acid (HA).

View Article and Find Full Text PDF

The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity.

View Article and Find Full Text PDF

Background: In neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), neutrophils are found in CNS lesions. We previously demonstrated that NMOSD neutrophils show functional deficiencies. Thus, we hypothesized that neutrophil accumulation in the CNS may be facilitated by impairments affecting mechanisms of neutrophil death.

View Article and Find Full Text PDF

In multiple sclerosis (MS), relapse rate is decreased by 70-80% in the third trimester of pregnancy. However, the underlying mechanisms driving this effect are poorly understood. Evidence suggests that CD56 NK cell frequencies increase during pregnancy.

View Article and Find Full Text PDF

In neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, mitochondrial damage caused by oxidative stress is believed to contribute to neuroaxonal damage. Previously, we demonstrated that exposure to hydrogen peroxide (HO) alters mitochondrial morphology and motility in myelinated axons and that these changes initiate at the nodes of Ranvier, where numerous sodium channels are located. Therefore, we suggested that mitochondrial damage may lead to ATP deficit, thereby affecting the efficiency of the sodium-potassium ATPase and eventually leading to sodium overload in axons.

View Article and Find Full Text PDF

Background: Fibrin deposition is a fundamental pathophysiological event in the inflammatory component of various CNS disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Beyond its traditional role in coagulation, fibrin elicits immunoinflammatory changes with oxidative stress response and activation of CNS-resident/peripheral immune cells contributing to CNS injury.

Purpose: To investigate if CNS fibrin deposition can be determined using molecular MRI, and to assess its capacity as a non-invasive imaging biomarker that corresponds to inflammatory response and barrier impairment.

View Article and Find Full Text PDF

Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo.

View Article and Find Full Text PDF

Cerebral infections are restrained by a complex interplay of tissue-resident and recruited peripheral immune cells. Whether innate lymphoid cells (ILCs) are involved in the orchestration of the neuroinflammatory dynamics is not fully understood. Here, we demonstrate that ILCs accumulate in the cerebral parenchyma, the choroid plexus, and the meninges in the onset of cerebral Toxoplasma gondii infection.

View Article and Find Full Text PDF

Background: Mitochondrial alterations are common to many inflammatory, degenerative as well as metabolic diseases. However, due to the vulnerability of mitochondria in explanted tissue, there is a general lack of ex vivo models, especially of CNS tissue, that preserve mitochondria and allow investigation of mitochondrial dynamics.

New Methods: Here, we present a model of acute hippocampal slices to study neuronal mitochondria ex vivo.

View Article and Find Full Text PDF

Magnetic resonance elastography (MRE) has revealed sexual dimorphism in brain stiffness in healthy individuals and multiple sclerosis (MS) patients. In an animal model of MS, named experimental autoimmune encephalomyelitis (EAE), we have previously shown that inflammation-induced brain softening was associated with alterations of the extracellular matrix (ECM). However, it remained unclear whether the brain ECM presents sex-specific properties that can be visualized by MRE.

View Article and Find Full Text PDF

Teriflunomide (TFN) limits relapses in relapsing-remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons.

View Article and Find Full Text PDF

Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity.

View Article and Find Full Text PDF

Neuroinflammatory processes occurring during multiple sclerosis cause disseminated softening of brain tissue, as quantified by magnetic resonance elastography (MRE). However, inflammation-mediated tissue alterations underlying the mechanical integrity of the brain remain unclear. We previously showed that blood-brain barrier (BBB) disruption visualized by MRI using gadolinium-based contrast agent (GBCA) does not correlate with tissue softening in active experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

Fingolimod is an approved oral treatment for relapsing-remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR).

View Article and Find Full Text PDF

Objective: To assess the safety and efficacy of epigallocatechin-3-gallate (EGCG) add-on to glatiramer acetate (GA) in patients with relapsing-remitting multiple sclerosis (RRMS).

Methods: We enrolled patients with RRMS (aged 18-60 years, Expanded Disability Status Scale [EDSS] score 0-6.5), receiving stable GA treatment in a multicenter, prospective, double-blind, phase II, randomized controlled trial.

View Article and Find Full Text PDF

The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a common pathological hallmark in various inflammatory and degenerative diseases of the central nervous system, including multiple sclerosis (MS). We previously showed that oxidative stress alters axonal mitochondria, limiting their transport and inducing conformational changes that lead to axonal damage. Teriflunomide (TFN), an oral immunomodulatory drug approved for the treatment of relapsing forms of MS, reversibly inhibits dihydroorotate dehydrogenase (DHODH).

View Article and Find Full Text PDF

Objective: To investigate the effect of cholecalciferol (vitamin D3) supplementation on peripheral immune cell frequency and N-glycan branching in patients with relapsing-remitting multiple sclerosis (RRMS).

Methods: Exploratory analysis of high-dose (20 400 IU) and low-dose (400 IU) vitamin D3 supplementation taken every other day of an 18-month randomized controlled clinical trial including 38 RRMS patients on stable immunomodulatory therapy (NCT01440062). We investigated cholecalciferol treatment effects on N-glycan branching using L-PHA stain (phaseolus vulgaris leukoagglutinin) at 6 months and frequencies of T-, B-, and NK-cell subpopulations at 12 months with flow cytometry.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) with gadolinium based contrast agents (GBCA) is routinely used in the clinic to visualize lesions in multiple sclerosis (MS). Although GBCA reveal endothelial permeability, they fail to expose other aspects of lesion formation such as the magnitude of inflammation or tissue changes occurring at sites of blood-brain barrier (BBB) disruption. Moreover, evidence pointing to potential side effects of GBCA has been increasing.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are tissue resident cells with organ-specific properties. Here, we show that the central nervous system (CNS) encompasses ILCs. In particular, CD3NK1.

View Article and Find Full Text PDF