Pea protein isolate (PPI), a high-concentration protein ingredient derived from peas, is increasingly utilized in food applications, including beverages, meat or dairy alternatives, and baked goods. The protein extraction process typically used to manufacture PPI renders the protein highly denatured, which can have a negative impact on its functionality. Therefore, it is critical to understand how to prepare and utilize PPI to maximize its functionality.
View Article and Find Full Text PDFTraditional ways to preserve cream involve processing it into butter, butter oil, or frozen storage. These technologies do not preserve the unique functionality of cream with respect to whipping or processing into butter. In this work, microwave vacuum drying (MVD) was investigated as a method to manufacture dehydrated cream.
View Article and Find Full Text PDFThis study investigates the antimicrobial effectiveness of 405 nm light emitting diodes (LEDs) against pathogenic Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus, in thin liquid films (TLF) and on solid surfaces. Stainless steel (SS), high density polyethylene (HDPE), low density polyethylene (LDPE), and borosilicate glass were used as materials typically encountered in food processing, food service, and clinical environments. Anodic aluminum oxide (AAO) coupons with nanoscale topography were used, to evaluate the effect of topography on inactivation.
View Article and Find Full Text PDFAnnu Rev Food Sci Technol
March 2023
Mechano-bactericidal (MB) nanopatterns have the ability to inactivate bacterial cells by rupturing cellular envelopes. Such biocide-free, physicomechanical mechanisms may confer lasting biofilm mitigation capability to various materials encountered in food processing, packaging, and food preparation environments. In this review, we first discuss recent progress on elucidating MB mechanisms, unraveling property-activity relationships, and developing cost-effective and scalable nanofabrication technologies.
View Article and Find Full Text PDFMicrowave vacuum drying (MVD) of concentrated skim milk and its resulting powder properties have been studied to a very limited extent. To explore the potential of this technology for the manufacture of milk powder, MVD of concentrated skim milk (37.5% total solids) was evaluated with respect to product properties and drying efficiency.
View Article and Find Full Text PDFThe effects of high-pressure processing (HPP) and heat treatment on the digestibility of protein and starch in pea protein concentrate (PPC) were investigated. Samples of PPC with 5% (5 P) and 15% (15 P) protein were treated by HPP (600 MPa/5 °C/4 min) or heat (95 °C/15 min) and their in vitro static and dynamic digestibility were compared to untreated controls. HPP-treated PPC underwent a greater degree of proteolysis and showed different peptide patterns after static gastric digestion compared to untreated and heat-treated PPC.
View Article and Find Full Text PDFConcentration of milk in the dairy industry is typically achieved by thermal evaporation or reverse osmosis (RO). Heat concentration is energy intensive and leads to cooked flavor and color changes in the final product, and RO is affected by fouling, which limits the final achievable concentration of the product. The main objective of this work was to evaluate forward osmosis (FO) as an alternative method for concentrating milk.
View Article and Find Full Text PDFIn this study, we investigated the effect of pH and calcium on the structural properties of gels created by high-pressure processing (HPP, 600 MPa, 5°C, 3 min) of milk protein concentrate (MPC, 12.5% protein). The pH level of the MPC was varied between 6.
View Article and Find Full Text PDFIn this work, pressure-assisted enzymatic gelation was applied to milk proteins, with the goal of enhancing the structure and stability of pressure-created milk protein gels. High-pressure processing (HPP) at 600 MPa, 3 min, and 5°C was applied to milk protein concentrate (MPC) samples of 12.5% protein concentration, both in the absence and in the presence of calf chymosin [up to 60 IMCU (international milk-clotting units)/kg of milk] or camel chymosin (up to 45 IMCU/kg of milk).
View Article and Find Full Text PDFIrradiation with deep-ultraviolet light-emitting diodes (DUV LEDs) is emerging as a low energy, chemical-free approach to mitigate microbial contamination, but the effect of surface conditions on treatment effectiveness is not well understood. Here, inactivation of L. innocua and E.
View Article and Find Full Text PDFThe objective of this study was to evaluate the effectiveness of cold microfiltration (MF), alone or in combination with heat treatment, in extending the shelf life of skim milk. Raw skim milk underwent MF at 6 ± 1°C with a ceramic membrane of 1.4-μm pore size, at a transmembrane pressure of 75.
View Article and Find Full Text PDFThis article provides composition information for 3 abundantly available but little characterized dairy coproduct streams: acid whey from Greek yogurt (GAW), acid whey from cottage cheese (CAW), and milk permeate (MP). Three replicate samples obtained on different dates from several dairy processors were analyzed. The main component in all streams was lactose, with up to 3.
View Article and Find Full Text PDFFront Microbiol
February 2019
Bacterial attachment to material surfaces can lead to the development of biofilms that cause severe economic and health problems. The outcome of bacterial attachment is determined by a combination of bacterial sensing of material surfaces by the cell and the physicochemical factors in the near-surface environment. This paper offers a systematic review of the effects of surface topography on a range of antifouling mechanisms, with a focus on how topographical scale, from micro- to nanoscale, may influence bacterial sensing of and attachment to material surfaces.
View Article and Find Full Text PDFBacterial spores present in milk can cause quality and shelf-life issues for dairy products. The objectives of this study were to evaluate the effectiveness of microfiltration (MF) in removing Bacillus licheniformis and Geobacillus sp. spores from skim milk using membranes with pore sizes of 1.
View Article and Find Full Text PDFHydrophilic surfaces of both abiotic and biological origin have been shown to bear particle-exclusion zones as large as hundreds of micrometers at liquid-solid interfaces. Here we present the first systematic investigation and evidence for bacteria-free exclusion zones for several bacterial strains, including pathogens associated with hospital infections and/or foodborne outbreaks: Staphylococcus aureus, Escherichia coli O157:H7, and Listeria monocytogenes. Tests were carried out both in a phosphate buffer, as well as triptic soy broth (TSB) of high ionic strength.
View Article and Find Full Text PDFReconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses.
View Article and Find Full Text PDFBackground/objectives: Prevention of biofilm formation by bacteria is of critical importance to areas that directly affect human health and life including medicine, dentistry, food processing and water treatment. This work showcases an effective and affordable solution for reducing attachment and biofilm formation by several pathogenic bacteria commonly associated with foodborne illnesses and medical infections.
Methods: Our approach exploits anodisation to create alumina surfaces with cylindrical nanopores with diameters ranging from 15 to 100 nm, perpendicular to the surface.
Thermal pasteurization can achieve the U. S. Food and Drug Administration-required 5-log reduction of pathogenic Escherichia coli O157:H7 and Cryptosporidium parvum in apple juice and cider, but it can also negatively affect the nutritional and organoleptic properties of the treated products.
View Article and Find Full Text PDFThis work reports on a simple, robust and scientifically sound method to develop surfaces able to reduce microbial attachment and biofilm development, with possible applications in medicine, dentistry, food processing, or water treatment. Anodic surfaces with cylindrical nanopores 15 to 100 nm in diameter were manufactured and incubated with Escherichia coli ATCC 25922 and Listeria innocua. Surfaces with 15 and 25 nm pore diameters significantly repressed attachment and biofilm formation.
View Article and Find Full Text PDFPulsed light (PL) treatment can effectively inactivate a large proportion of contaminating bacteria on surfaces and in clear solutions. An important issue that needs to be investigated is whether repeated exposure to PL treatment causes any changes to the growth and resistance behavior of the bacteria surviving the treatment. To test this, three challenge microorganisms were used: Listeria monocytogenes, Listeria innocua, and Escherichia coli.
View Article and Find Full Text PDFAttachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated.
View Article and Find Full Text PDFIn the Luangwa Valley, Zambia, persistent poverty and hunger present linked challenges to rural development and biodiversity conservation. Both household coping strategies and larger-scale economic development efforts have caused severe natural resource degradation that limits future economic opportunities and endangers ecosystem services. A model based on a business infrastructure has been developed to promote and maintain sustainable agricultural and natural resource management practices, leading to direct and indirect conservation outcomes.
View Article and Find Full Text PDFThe main objective of this work was to evaluate the effectiveness of pulsed light (PL) treatment for the inactivation of Escherichia coli in liquids with different levels of clarity. Nonpathogenic E. coli ATCC 25922 and pathogenic E.
View Article and Find Full Text PDFThe risk of listeriosis associated with ready-to-eat foods is a major concern in the United States. Pulsed light (PL) treatment has been effective for killing Listeria. The possibility of enhancing the antilisterial capability of PL treatment by combining PL with an additional hurdle, the natural antimicrobial nisin, was explored in this study.
View Article and Find Full Text PDFPulsed light (PL) treatment can effectively reduce microbial populations in clear substrates and on surfaces, but its effectiveness varies as a function of substrate or treatment-related factors. For PL to be successfully adopted by the food industry, all factors of influence, as well as the inactivation kinetics for the microorganisms of concern, must be elucidated. In this study, the inactivation kinetics of Listeria innocua and the effect of inoculum size on PL inactivation were investigated.
View Article and Find Full Text PDF