Increased TNF-α levels following acute myocardial infarction (AMI) contribute to impaired recovery of myocardial function. Interaction of inactive rhomboid protein 2 (iRhom2) with TNF-α converting enzyme (TACE) is required for TNF-α shedding from immune cells. We hypothesized that iRhom2 expression increases in circulating monocytes following AMI.
View Article and Find Full Text PDFInflammation has enduring impacts on organismal immunity. However, the precise mechanisms by which tissue-restricted inflammation conditions systemic responses are poorly understood. Here, we leveraged a highly compartmentalized model of skin inflammation and identified a surprising type I interferon (IFN)- mediated activation of hematopoietic stem/progenitor cells (HSPCs) that results in profound changes to systemic host responses.
View Article and Find Full Text PDFAims: Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and anti-inflammatory treatment strategies are currently pursued to lower cardiovascular disease burden. Modulation of recently discovered inactive rhomboid protein 2 (iRhom2) attenuates shedding of tumour necrosis factor-alpha (TNF-α) selectively from immune cells. The present study aims at investigating the impact of iRhom2 deficiency on the development of atherosclerosis.
View Article and Find Full Text PDFManagement of protein homeostasis by the ubiquitin-proteasome system is critical for atherosclerosis development. Recent studies showed controversial results on the role of immunoproteasome (IP) subunit β5i/LMP7 in maintenance of protein homeostasis under cytokine induced oxidative stress. The present study aimed to investigate the effect of β5i/LMP7-deficiency on the initiation and progression of atherosclerosis as a chronic inflammatory, immune cell driven disease.
View Article and Find Full Text PDF