Publications by authors named "Carmen Garcia-Pelayo"

Heterologous BCG prime-boost regimens represent a promising strategy for an urgently required improved tuberculosis vaccine. Identifying the mechanisms which underpin the enhanced protection induced by such strategies is one key aim which would significantly accelerate rational vaccine development. Experimentally, airway vaccination induces greater efficacy than parenteral delivery; in both conventional vaccination and heterologous boosting of parenteral BCG immunisation.

View Article and Find Full Text PDF

Boosting BCG using heterologous prime-boost represents a promising strategy for improved tuberculosis (TB) vaccines, and adenovirus (Ad) delivery is established as an efficacious boosting vehicle. Although studies demonstrate that intranasal administration of Ad boost to BCG offers optimal protection, this is not currently possible in cattle. Using Ad vaccine expressing the mycobacterial antigen TB10.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a global pandemic, in both animals and man, and novel vaccines are urgently required. Heterologous prime-boost of BCG represents a promising strategy for improved TB vaccines, with respiratory delivery the most efficacious to date. Such an approach may be an ideal vaccination strategy against bovine TB (bTB), but respiratory vaccination presents a technical challenge in cattle.

View Article and Find Full Text PDF

It is generally assumed that the inbred mouse strains BALB/c (H-2(d)) and C57BL/6 (H-2(b)) respond to mycobacterial infection with distinct polarisation of T helper responses, with C57BL/6 predisposed to Th1 and BALB/c to Th2. We investigated this in a BCG-immunisation, Mycobacterium bovis challenge model. Following immunisation, lung and spleen cell cytokine responses to in vitro re-stimulation with a cocktail of seven secreted, immunogenic, recombinant mycobacterial proteins were determined.

View Article and Find Full Text PDF

Previous experiments for the identification of novel diagnostic or vaccine candidates for bovine tuberculosis have followed a targeted approach, wherein specific groups of proteins suspected to contain likely candidates are prioritized for immunological assessment (for example, with in silico approaches). However, a disadvantage of this approach is that the sets of proteins analyzed are restricted by the initial selection criteria. In this paper, we describe a series of experiments to evaluate a nonbiased approach to antigen mining by utilizing a Gateway clone set for Mycobacterium tuberculosis, which constitutes a library of clones expressing 3,294 M.

View Article and Find Full Text PDF

Mycobacterium bovis isolates from the Iberian Peninsula are dominated by strains with spoligotype patterns deleted for spacer 21. Whole-genome sequencing of three Spanish strains with spacer 21 missing in their spoligotype pattern revealed a series of SNPs and subsequent screening of a selection of these SNPs identified one in gene guaA that is specific to these strains. This group of strains from the Iberian Peninsula missing spoligotype spacer 21 represents a new clonal complex of M.

View Article and Find Full Text PDF

We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M.

View Article and Find Full Text PDF

A number of single-nucleotide polymorphisms (SNPs) have been identified in the genome of Mycobacterium bovis BCG Pasteur compared with the sequenced strain M. bovis 2122/97. The functional consequences of many of these mutations remain to be described; however, mutations in genes encoding regulators may be particularly relevant to global phenotypic changes such as loss of virulence, since alteration of a regulator's function will affect the expression of a wide range of genes.

View Article and Find Full Text PDF

The identification of factors involved in the interaction of Mycobacterium bovis with the hosts will lead to new strategies to control bovine tuberculosis. In this study we compared the transcriptional profile of an attenuated M. bovis strain and a virulent M.

View Article and Find Full Text PDF

To further unravel the mechanisms responsible for attenuation of the tuberculosis vaccine Mycobacterium bovis BCG, comparative genomics was used to identify single nucleotide polymorphisms (SNPs) that differed between sequenced strains of Mycobacterium bovis and M. bovis BCG. SNPs were assayed in M.

View Article and Find Full Text PDF

We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M.

View Article and Find Full Text PDF

Control of bovine tuberculosis (bTB) relies on regular testing of cattle with a crude preparation of mycobacterial antigens termed purified protein derivative (PPD). Worldwide production of bovine PPD uses the Mycobacterium bovis AN5, a strain that was originally isolated circa 1948 in Great Britain (GB). Despite its worldwide use, the AN5 strain is poorly characterised.

View Article and Find Full Text PDF

To understand the evolution, attenuation, and variable protective efficacy of bacillus Calmette-Guérin (BCG) vaccines, Mycobacterium bovis BCG Pasteur 1173P2 has been subjected to comparative genome and transcriptome analysis. The 4,374,522-bp genome contains 3,954 protein-coding genes, 58 of which are present in two copies as a result of two independent tandem duplications, DU1 and DU2. DU1 is restricted to BCG Pasteur, although four forms of DU2 exist; DU2-I is confined to early BCG vaccines, like BCG Japan, whereas DU2-III and DU2-IV occur in the late vaccines.

View Article and Find Full Text PDF

Tuberculosis in seals is caused by Mycobacterium pinnipedii, a member of the Mycobacterium tuberculosis complex. In this study, we evaluated the extent of genetic variability among Mycobacterium bovis and M. pinnipedii by microarray-based comparative genomics.

View Article and Find Full Text PDF

The mechanisms by which saturated and polyunsaturated fatty acids may exert their effects on levels of blood cholesterol and human atherosclerosis have not been fully established. In this work, we studied the translational effects of myristic (14:0) and eicosapentaenoic (20:5) acids on 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase from Reuber H35 hepatoma cells. This enzyme is an intrinsic membrane, 96-kDa protein whose proteolysis releases an enzymatically active, 52- to 56-kDa, soluble fragment.

View Article and Find Full Text PDF

Mycobacterium microti is the agent of tuberculosis in wild voles and has been used as a live vaccine against tuberculosis in man and cattle. To explore the M. microti genome in greater detail, we used a M.

View Article and Find Full Text PDF

There is controversy about the effect of saturated and polyunsaturated fats on 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the main regulatory enzyme of cholesterogenic pathway. Results from dietary studies are difficult to interpret because diets normally contain a mixture of fatty acids. Therefore, we have used Reuber H35 hepatoma cells whose phospholipids were enriched in different individual fatty acids and have studied their effects on the cellular reductase activity.

View Article and Find Full Text PDF