Gerontol Geriatr Educ
February 2025
Objective: To describe the training, career experiences, and roles and responsibilities of faculty members in American and Canadian schools/colleges of pharmacy involved in geriatrics-focused teaching, research, practice, or service.
Methods: A cross-sectional, web-based, self-administered survey was developed and pre-tested. Pharmacy faculty members with experience and/or expertise in geriatrics-focused practices or scholarships and/or who taught geriatrics-focused topics in US or Canadian pharmacy programs were eligible for participation.
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes.
View Article and Find Full Text PDFThe investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets.
View Article and Find Full Text PDFWhile humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes.
View Article and Find Full Text PDFAge-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs.
View Article and Find Full Text PDFNeurexins (NRXNs) are cell-adhesion molecules important in the formation and remodeling of neural circuits. It has been shown that aversive environmental stimuli can affect the expression pattern of Neurexin genes (Nrxns) impacting the regulation of synaptic strength. Accumulated evidence suggests that, after chronic exposure to psychological stress, the triggered changes in gene expression and splicing patterns of Nrxns may be involved in aversive conditioning.
View Article and Find Full Text PDFThe transport and translation of dendritic mRNAs by RNA-binding proteins (RBPs) allows for spatially restricted gene expression in neuronal processes. Although local translation in neuronal dendrites is now well documented, there is little evidence for corresponding effects on local synaptic function. Here, we report that the RBP Sam68 promotes the localization and translation of Arc mRNA preferentially in distal dendrites of rodent hippocampal CA1 pyramidal neurons.
View Article and Find Full Text PDFPrevious evidence has suggested that dietary supplementation with a bioactive dietary polyphenol preparation (BDPP) rescues impairment of hippocampus-dependent memory in a mouse model of sleep deprivation (SD). In the current study, we extend our previous evidence and demonstrate that a mechanism by which dietary BDPP protects against SD-mediated cognitive impairment is via mechanisms that involve phosphorylation of the mammalian target of rapamycin complex 1 and its direct downstream targets, including the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and the ribosomal protein S6 kinase β-1 (p70S6K). In additional mechanistic studies in vitro, we identified the brain bioavailable phenolic metabolites derived from the metabolism of dietary BDPP that are responsible for the attenuation of SD-mediated memory impairments.
View Article and Find Full Text PDFProthymosin α (ProTα) is an acidic protein with a nuclear role related to the chromatin activity through its interaction with histones in mammalian cells. ProTα acts as an anti-apoptotic factor involved in the control of the apoptosome activity in the cytoplasm, however the mechanisms underlying this function are still known. ProTα shares similar biological functions with acidic nuclear-cytoplasmic shuttling proteins included in SET and ANP32 family members.
View Article and Find Full Text PDFLatrunculin A microperfusion in rat hippocampus has shown to be an effective model of acute and chronic seizures for neurochemical studies. The intervention over early synaptic plasticity changes after the epileptogenesis onset represents a big challenge on the design of a suitable therapy to impair the epilepsy development. We previously suggested that receptor location might be essential for controlling neuronal excitability, and that disruption of local cytoskeletal dynamics followed by drastic changes in the synaptic/extrasynaptic ratio of NMDA, AMPA receptors and their subsequent downstream signalling may play an important role in the pathogenesis of seizures.
View Article and Find Full Text PDF