Cholinergic nerves are involved in tumor progression and dissemination. In contrast to other visceral tissues, cholinergic innervation in the hepatic parenchyma is poorly detected. It remains unclear whether there is any form of cholinergic regulation of liver cancer.
View Article and Find Full Text PDFAlthough widely studied as a neurotransmitter, T cell-derived acetylcholine (ACh) has recently been reported to play an important role in regulating immunity. However, the role of lymphocyte-derived ACh in viral infection is unknown. Here, we show that the enzyme choline acetyltransferase (ChAT), which catalyzes the rate-limiting step of ACh production, is robustly induced in both CD4 and CD8 T cells during lymphocytic choriomeningitis virus (LCMV) infection in an IL-21-dependent manner.
View Article and Find Full Text PDFWnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues.
View Article and Find Full Text PDFPrimary immunodeficiency diseases comprise a group of heterogeneous genetic defects that affect immune system development and/or function. Here we use in vitro differentiation of human induced pluripotent stem cells (iPSCs) generated from patients with different recombination-activating gene 1 (RAG1) mutations to assess T-cell development and T-cell receptor (TCR) V(D)J recombination. RAG1-mutants from severe combined immunodeficient (SCID) patient cells showed a failure to sustain progression beyond the CD3(--)CD4(-)CD8(-)CD7(+)CD5(+)CD38(-)CD31(-/lo)CD45RA(+) stage of T-cell development to reach the CD3(-/+)CD4(+)CD8(+)CD7(+)CD5(+)CD38(+)CD31(+)CD45RA(-) stage.
View Article and Find Full Text PDFThe E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation.
View Article and Find Full Text PDFDiet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2016
Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies. Although these mutations are most commonly associated with myeloid diseases, they also occur in malignancies of the T-cell lineage. To investigate their role in these diseases and provide tractable disease models for further investigation, we analyzed the T-cell compartment in a conditional knock-in (KI) mouse model of mutant Idh1.
View Article and Find Full Text PDFThe cell cycle is an evolutionarily conserved process necessary for mammalian cell growth and development. Because cell-cycle aberrations are a hallmark of cancer, this process has been the target of anti-cancer therapeutics for decades. However, despite numerous clinical trials, cell-cycle-targeting agents have generally failed in the clinic.
View Article and Find Full Text PDFTumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling.
View Article and Find Full Text PDFProtein tyrosine kinase 6 (PTK6), also called breast tumor kinase (BRK), is expressed in epithelial cells of various tissues including the prostate. Previously it was shown that PTK6 is localized to epithelial cell nuclei in normal prostate, but becomes cytoplasmic in human prostate tumors. PTK6 is also primarily cytoplasmic in the PC3 prostate adenocarcinoma cell line.
View Article and Find Full Text PDFReactive oxygen species (ROS) is critical for premature senescence, a process significant in tumor suppression and cancer therapy. Here, we reveal a novel function of the nucleotide excision repair protein DDB2 in the accumulation of ROS in a manner that is essential for premature senescence. DDB2-deficient cells fail to undergo premature senescence induced by culture shock, exogenous oxidative stress, oncogenic stress, or DNA damage.
View Article and Find Full Text PDFARF is a vital tumor suppressor and its loss contributes significantly to cancer. The frequency in which ARF is mutated, deleted or silenced is second to the loss of p53. The most documented and widely accepted activity of ARF is mediated through its activation of the p53 transcriptional program by inhibiting MDM2 function.
View Article and Find Full Text PDFThe Forkhead box M1 (FoxM1) transcription factor is critical for expression of the genes essential for G(1)/S transition and mitotic progression. To explore the cell cycle regulation of FoxM1, we examined the phosphorylation profile of FoxM1. Here, we show that the phosphorylated status and the activity of FoxM1 increase as cells progress from S to G(2)/M phases.
View Article and Find Full Text PDFThe tumour suppressor ARF (alternative reading frame), which is mutated or silenced in various tumours, has a crucial role in tumour surveillance to suppress unwarranted cell growth and proliferation. ARF has also been linked to the DNA-damage-induced response of p53 because of its ability to inhibit murine double minute 2 (MDM2). Here, however, we provide genetic evidence for a role of ARF in nucleotide excision repair (NER) that is independent of p53.
View Article and Find Full Text PDFp14/p19ARF (ARF) is a tumor suppressor gene that is frequently mutated in human cancer. ARF has multiple tumor suppressor functions, some of which are mediated by signaling to p53. Surprisingly, a significant fraction of human tumors retain persistently high levels of ARF, suggesting that ARF may possess a prosurvival function.
View Article and Find Full Text PDF