Descending serotonergic (5-HT) projections originating from the raphe nuclei form an important input to the spinal cord that control basic locomotion. The molecular signals that control this projection pattern are currently unknown. Here, we identify Semaphorin7A (Sema7A) as a critical cue that restricts serotonergic innervation in the spinal cord.
View Article and Find Full Text PDFThe remodeling of supraspinal axonal circuits mediates functional recovery after spinal cord injury. This process critically depends on the selection of appropriate synaptic connections between cortical projection and spinal relay neurons. To unravel the principles that guide this target selection, we used genetic and chemogenetic tools to modulate NMDA receptor (NMDAR) integrity and function, CREB-mediated transcription, and neuronal firing of relay neurons during injury-induced corticospinal remodeling.
View Article and Find Full Text PDFIn vivo imaging of the spinal cord has allowed the observation of single axons over relatively long periods in the living mouse. After spinal cord injury, this methodology has helped to differentiate several pathological stages and tissue processes which impact axon morphology. In addition, the combination of in vivo imaging techniques with particular molecular intervention has shown that specific pathological axon changes can respond to distinct treatments.
View Article and Find Full Text PDF