The mechanisms implicated in the differentiation of fibroblastic precursors into adipocytes can be analyzed in vitro using cell models, such as the 3T3-L1 cell line. Since cell differentiation involves an exit from the cell cycle, it is likely that molecules that inhibit proliferation participate in the control of adipogenesis. This study was aimed at determining the role, if any, of several cyclin-dependent kinase (CDK)-inhibitors and the transcription factor C/EBPα in the process of adipocyte differentitation.
View Article and Find Full Text PDFContext: Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disorder mostly owing to a genetic defect in MEN1 gene. Not all patients with MEN1 phenotype present a defect in this gene. Thus, other genes like CDKN and AIP have been showed to be involved in MEN1-like patients.
View Article and Find Full Text PDFPocket proteins and cyclin-dependent kinase (CDK) inhibitors negatively regulate cell proliferation and can promote differentiation. However, which members of these gene families, which cell type they interact in, and what they do to promote differentiation in that cell type during mouse development are largely unknown. To identify the cell types in which p107 and p27 interact, we generated compound mutant mice.
View Article and Find Full Text PDFNeoangiogenesis involves both bone marrow-derived myelomonocytic and endothelial progenitor cells as well as endothelial cells coopted from surrounding vessels. Cytokines induce these cells to proliferate, migrate, and exit the cell cycle to establish the vasculature; however, which cell cycle regulators play a role in these processes is largely unknown. Here, we report that mice lacking the cell cycle inhibitors p130 and p27 show defects in tumor neoangiogenesis, both in xenografts and spontaneously arising tumors.
View Article and Find Full Text PDFObjectives/hypothesis: Proteins p53 and cyclin D1 play a crucial role in cell cycle control. Protein p53 mutations are one of the most common genetic alterations in human cancer, and cyclin D1 gene amplification has been found to be associated with poor prognosis in different types of tumors. Functional alterations of these proteins may play an important role both in the carcinogenesis of squamous carcinomas of the head and neck and in the clinical evolution of these tumors.
View Article and Find Full Text PDF