(1) Background: This study aimed to assess the pulpal response of primary teeth by pulse-oximetry (PO) in a canine model, following direct pulp capping (DPC). (2) Methods: Forty-eight primary teeth from eight canine subjects were divided into three treatment groups, based on the DPC material—calcium hydroxide (CH), MTA, BiodentineTM)—and three corresponding control groups. Data from PO pulp testing were correlated with laser Doppler flowmetry (LDF) testing, computer tomographic (CT) densitometry and histological analysis; the experiment lasted 14 days.
View Article and Find Full Text PDF: Antiresorptive or anti-angiogenic agents may induce medication-related osteonecrosis of the jaws (MRONJ), which represents a challenge for clinicians. The aim of this study is to design and apply a composed and stage-approach therapy combining antibiotherapy, surgical treatment, and photo-biomodulation (PBM) for the prevention or treatment of MRONJ lesions. : The proposed treatment protocol was carried out in the Department of Oral & Maxillofacial Surgery of the "Victor Babes" University of Medicine and Farmacy of Timisoara, in 2018-2020.
View Article and Find Full Text PDFInt J Mol Sci
January 2020
Background: Alveolar bone defects are usually the main concern when planning implant treatments for the appropriate oral rehabilitation of patients. To improve local conditions and achieve implant treatments, there are several methods used for increasing bone volume, among which one of the most successful, versatile, and effective is considered to be guided bone regeneration. The aim of this demonstrative study was to propose an innovative analysis protocol for the evaluation of the effect of photobiomodulation on the bone regeneration process, using rat calvarial defects of 5 mm in diameter, filled with xenograft, covered with collagen membrane, and then exposed to laser radiation.
View Article and Find Full Text PDFBackground: The need for hard and soft tissues in oral implantology determined the development of methods and techniques to increase bone volume and their quality with different alternative materials used as substituents of patient's natural bone. In addition, laser radiation can be used to accelerate the repair of fractures and to produce an increased volume of formed callus, as well as an increased bone mineral density.
Methods: The aim of this work is to evaluate the capability of an in-house developed multimodal complex master slave (CMS) enhanced swept source (SS) optical coherence tomography (OCT) imaging instrument to analyze the increase in the quantity and the improvement of the quality of newly-formed bone using low level laser therapy (LLLT).