Tau fibrillization is a potential therapeutic target for Alzheimer's and other neurodegenerative diseases. Small molecules capable of both inhibiting aggregation and promoting filament disaggregation have been discovered, but knowledge of their mechanism of action and potential for testing in biological models is fragmentary. To clarify these issues, the interaction between a small-molecule inhibitor of tau fibrillization, 3,3'-bis(beta-hydroxyethyl)-9-ethyl-5,5'-dimethoxythiacarbocyanine iodide (N744), and full-length four-repeat tau protein was characterized in vitro using transmission electron microscopy and fluorescence spectroscopy.
View Article and Find Full Text PDFAlzheimer's disease is characterized in part by the accumulation of full-length tau proteins into intracellular filamentous inclusions. To clarify the events that trigger lesion formation, the aggregation of recombinant full-length four-repeat tau (htau40) was examined in vitro under near-physiological conditions using transmission electron microscopy and spectroscopy methods. In the absence of exogenous inducers, tau protein behaved as an assembly-incompetent monomer with little tertiary structure.
View Article and Find Full Text PDFNew methods for analyzing tau fibrillization have yielded insights into the biochemical transitions involved in the process. Here we review the parallels between the sequential progression of tau fibrillization observed macroscopically in Alzheimer's disease (AD) lesions and the pathway of tau aggregation observed in vitro with purified tau preparations. In addition, pharmacological agents for further dissection of fibrillization mechanism and lesion formation are discussed.
View Article and Find Full Text PDFAlzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule associated protein tau. Because animal model studies suggest that a toxic gain of function accompanies tau aggregation in neurons, selective pharmacological inhibitors of the process may have utility in slowing neurodegeneration. Here, the properties of a candidate small molecule inhibitor of tau fibrillization, 3-(2-hydroxyethyl)-2-[2-[[3-(2-hydroxyethyl)-5-methoxy-2-benzothiazolylidene]methyl]-1-butenyl]-5-methoxybenzothiazolium (N744), were characterized in vitro using transmission electron microscopy.
View Article and Find Full Text PDFAlzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy.
View Article and Find Full Text PDFParkinson's disease is characterized by the aggregation of alpha-synuclein into filamentous forms within affected neurons of the basal ganglia. Fibrillization of purified recombinant alpha-synuclein is inefficient in vitro but can be enhanced by the addition of various agents including glycosaminoglycans and polycations. Here we report that fatty acids and structurally related anionic detergents greatly accelerate fibrillization of recombinant alpha-synuclein at low micromolar concentrations with lag times as short as 11 min and apparent first order growth rate constants as fast as 10.
View Article and Find Full Text PDFAlzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of recombinant tau can be induced by treatment with various agents, including phosphotransferases, polyanionic compounds, and fatty acids. Here we characterize the structural features required for the fatty acid class of tau fibrillization inducer using recombinant full-length tau protein, arachidonic acid, and a series of straight chain anionic, cationic, and nonionic detergents.
View Article and Find Full Text PDF