Current osteosarcoma therapies cause severe treatment-related side effects and chemoresistance, and have low success rates. Consequently, alternative treatment options are urgently needed. Photodynamic therapy (PDT) is a minimally invasive, local therapy with proven clinical efficacy for a variety of tumor types.
View Article and Find Full Text PDFp63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63.
View Article and Find Full Text PDFIn recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response(1).
View Article and Find Full Text PDFCurrent combined surgical and neo-adjuvant chemotherapy of primary metastatic osteosarcoma (OS) is ineffective, reflected by a 5-year survival rate of affected patients of less than 20 %. Studies in experimental OS metastasis models pointed to the CXCR4/CXCL12 homing axis as a novel target for OS metastasis-suppressive treatment. The present study investigated for the first time the CXCR4-blocking principle in a spontaneously metastasizing human 143B OS cell line-derived orthotopic xenograft mouse model.
View Article and Find Full Text PDFMore effective treatment of metastasizing osteosarcoma with a current mean 5-year survival rate of less than 20% requires more detailed knowledge on mechanisms and key regulatory molecules of the complex metastatic process. CXCR4, the receptor of the chemokine CXCL12, has been reported to promote tumor progression and metastasis in osteosarcoma. CXCR7 is a recently deorphanized CXCL12-scavenging receptor with so far not well-defined functions in tumor biology.
View Article and Find Full Text PDFUnlabelled: The aim of this study was to characterize the different phenotypes of osteosarcoma by PET, comparing the uptake of 3 tracers ((18)F-FDG, (18)F-fluoromisonidazole [(18)F-FMISO], and (18)F-fluoride) in preclinical mouse models that reflect the heterogeneity of the human disease.
Methods: Mouse LM8 osteosarcoma, human 143B, and Caprin-1 stably overexpressing SaOS-2 cells were injected intratibially in C3H and severe-combined immunodeficient mice. PET imaging with (18)F-FDG, (18)F-FMISO, and (18)F-fluoride was performed in these mouse models, and a ratio between the standardized uptake value of the primary tumor and a control area of bone was calculated and compared among the models.
Osteosarcoma (OS) is the most frequent primary malignant bone cancer in children and adolescents with a high propensity for lung metastasis. Therefore, it is of great importance to identify molecular markers leading to increased metastatic potential in order to devise more effective therapeutic strategies that suppress metastasis, the major cause of death in OS. CD44, the principal receptor for the extracellular matrix component hyaluronan (HA), is frequently found overexpressed in tumor cells and has been implicated in metastatic spread in various cancer types.
View Article and Find Full Text PDFBackground: Osteosarcoma is the most common malignant bone tumor in children and young adults. Since the introduction of chemotherapy, the 5-year survival rate of patients with non-metastatic osteosarcoma is ~70%. The main problems in osteosarcoma therapy are the occurrence of metastases, severe side-effects and chemoresistance.
View Article and Find Full Text PDFFormation of metastases in the lungs is the major cause of death in patients suffering from osteosarcoma (OS). Metastases at presentation and poor response to preoperative chemotherapy are strong predictors for poor patient outcome. The elucidation of molecular markers that promote metastasis formation and/or chemoresistance is therefore of importance.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a minimally invasive therapeutic modality approved for palliative and curative treatment of some forms of local cancers, precancerous lesions and nononcological disorders. As a prerequisite for future studies in animal models aiming at an intraoperative application of PDT in osteosarcoma (OS), in the present study, we investigated the uptake and the dark- and photo-toxicity of the photosensitizer mTHPC in the metastatic human OS cell line 143B, which, intratibially injected into SCID mice, reproduces spontaneous, aggressive lung metastasis, the main cause of death in OS patients. The uptake of mTHPC by 143B cells was time- and dose-dependent.
View Article and Find Full Text PDF