Publications by authors named "Carmen C Wong"

Metabolic adaptation serves as a significant driving force for cancer growth and poses a substantial obstacle for cancer therapies. Herein, we unraveled the role of m6A-mediated serine synthesis pathway (SSP) regulation in both hepatocellular carcinoma (HCC) development and therapeutic resistance. We demonstrated that treatment of highly specific m6A inhibitor (STM2457) effectively inhibited HCC cell line growth and suppressed spontaneous HCC formation in mice driven by liver-specific Tp53 knockout and Myc overexpression.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), the major type of primary liver cancer, is notorious for its resistance to systemic treatments. The field has made a great leap in the past decade, with the number of FDA-approved therapies for advanced HCC increasing from 1 to 9. Although tyrosine kinase inhibitors remain the most common first-line option as monotherapy treatment, the clinical success of immune checkpoint inhibitors, especially when used in combination with anti-VEGF/VEGFR in HCC will likely transform the treatment landscape.

View Article and Find Full Text PDF

Background And Aims: Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC.

Approach And Results: CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples.

View Article and Find Full Text PDF

Hypoxia-induced adenosine creates an immunosuppressive tumor microenvironment (TME) and dampens the efficacy of immune checkpoint inhibitors (ICIs). We found that hypoxia-inducible factor 1 (HIF-1) orchestrates adenosine efflux through two steps in hepatocellular carcinoma (HCC). First, HIF-1 activates transcriptional repressor MXI1, which inhibits adenosine kinase (ADK), resulting in the failure of adenosine phosphorylation to adenosine monophosphate.

View Article and Find Full Text PDF

Background & Aims: Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with dreadful clinical outcome. Tyrosine kinase inhibitors and immune checkpoint inhibitors are the only United States Food and Drug Administration-approved therapeutic options for patients with advanced HCC with limited therapeutic success. Ferroptosis is a form of immunogenic and regulated cell death caused by chain reaction of iron-dependent lipid peroxidation.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic reprogramming in cancer is closely linked to hypoxia, which aids rapid tumor growth and reduces oxidative stress; PFKFB, a key glycolytic enzyme, is vital in various cancers but its role in hepatocellular carcinoma (HCC) is not well-studied.
  • The researchers analyzed PFKFB4 expression using RNA sequencing and confirmed its up-regulation in HCC through various methods, discovering a correlation with certain genetic mutations and aggressive tumor behavior.
  • Functional studies using CRISPR/Cas9 to knock out PFKFB4 demonstrated that its loss impaired HCC development and altered metabolite levels, affecting pathways like glycolysis and the pentose phosphate pathway.
View Article and Find Full Text PDF

Background & Aims: Tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) are the only two classes of FDA-approved drugs for individuals with advanced hepatocellular carcinoma (HCC). While TKIs confer only modest survival benefits, ICIs have been associated with remarkable outcomes but only in the minority of patients who respond. Understanding the mechanisms that determine the efficacy of ICIs in HCC will help to stratify patients likely to respond to ICIs.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a highly lethal cancer that may be effectively targeted by limiting dietary glutamine, a nutrient that supports HCC growth.
  • The study reveals that certain enzymes involved in pyruvate metabolism (PDHA, PDHB, and PC) are essential for HCC cells to adapt when glutamine is scarce, enabling rapid metabolic adjustments.
  • Combining a glutamine-restricted diet with inhibitors of pyruvate metabolism shows promise in reducing HCC cell growth, suggesting a new therapeutic strategy that leverages these metabolic vulnerabilities.
View Article and Find Full Text PDF

Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism.

View Article and Find Full Text PDF

Immune cell therapy involves the administration of immune cells into patients, and it has emerged as one of the most common type of immunotherapy for cancer treatment. Knowledge on the biology and metabolism of the adoptively transferred immune cells and the metabolic requirements of different cell types in the tumor is fundamental for the development of immune cell therapy with higher efficacy. Adoptive T cell therapy has been shown to be effective in limited types of cancer.

View Article and Find Full Text PDF

Background And Aims: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects.

View Article and Find Full Text PDF

Background & Aims: The highly proliferative nature of hepatocellular carcinoma (HCC) frequently results in a hypoxic intratumoural microenvironment, which creates a therapeutic challenge owing to a lack of mechanistic understanding of the phenomenon. We aimed to identify critical drivers of HCC development and progression in the hypoxic microenvironment.

Methods: We performed integrative analysis of multiple transcriptomic and genomic profiles specific for HCC and hypoxia and identified the Ephrin-A3/Eph receptor A2 (EphA2) axis as a clinically relevant and hypoxia-inducible signalling axis in HCC.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) invariably exhibits inadequate O (hypoxia) and nutrient supply. Hypoxia-inducible factor (HIF) mediates cascades of molecular events that enable cancer cells to adapt and propagate. Macropinocytosis is an endocytic process initiated by membrane ruffling, causing the engulfment of extracellular fluids (proteins), protein digestion and subsequent incorporation into the biomass.

View Article and Find Full Text PDF

Cancer cells adapt to hypoxia through HIFs (hypoxia-inducible factors), which initiate the transcription of numerous genes for cancer cell survival in the hypoxia microenvironment. In this study, we find that the FACT (facilitates chromatin transcription) complex works cooperatively with HIFs to facilitate the expeditious expression of HIF targets for hypoxia adaptation. Knockout (KO) of the FACT complex abolishes HIF-mediated transcription by impeding transcription elongation in hypoxic cancer cells.

View Article and Find Full Text PDF