Marine sponge reefs usually comprise a complex array of taxonomically different sponge species, many of these hosting highly diverse microbial communities. The number of microbial species known to occupy a given sponge ranges from tens to thousands, bringing numerous challenges to their analysis. One way to deal with such complexity is to use a core microbiota approach, in which only prevalent and abundant microbes are considered.
View Article and Find Full Text PDFMarine coastal contamination caused by human activity is a major issue worldwide. The implementation of effective pollution monitoring programs, especially in coastal areas, is important and urgent. The use of biological, physiological, or biochemical measurements to monitor the impacts of pollution has garnered increasing interest, particularly for the development of new non-invasive tools to assess water pollution.
View Article and Find Full Text PDFThe ability of aerobic granular sludge (AGS) technology to biotransform contaminants of emerging concern (CECs) is largely unknown. AGS supplemented with either acetate, 2-propanol, glycerol, or a 1:1:1 mixture of all three, were cultivated to investigate the link between carbon supplements and biotransformation of six CECs. Carbon substrate had a significant effect on the microbial community composition, as assessed by 16S rRNA gene sequence analyses.
View Article and Find Full Text PDFCo-evolutionary theory predicts that if beneficial microbial symbionts improve host fitness, they should be faithfully transmitted to offspring. More recently, the hologenome theory of evolution predicts resemblance between parent and offspring microbiomes and high partner fidelity between host species and their vertically transmitted microbes. Here, we test these ideas in multiple coexisting host species with highly diverse microbiota, leveraging known parent-offspring pairs sampled from eight species of wild marine sponges (Porifera).
View Article and Find Full Text PDFMicroorganisms play fundamental roles in the diversity and functional stability of environments, including nutrient and energy cycling. However, microbial biodiversity loss and change because of global climate and land use change remain poorly understood. Many microbial taxa exhibit fast growth rates and are highly sensitive to environmental change.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
March 2019
Introduction: Adenotonsillar and middle ear diseases result in some of the most frequently performed operations in the pediatric population worldwide. The pathogen reservoir hypothesis (PRH) suggests that the adenoids act as a reservoir of bacteria which play a potential pathogenic role in otitis media. Evidence supporting this hypothesis is limited.
View Article and Find Full Text PDFIntroduction: Culture-independent methods, based on bacterial 16 S rRNA gene sequencing, have been used previously to investigate the adenotonsillar microbiota. However, these studies have focused on a single sampling site (usually a surface swab). We aimed to investigate potential differences in adenotonsillar microbiota according to sampling location, both on and within the adenoids and palatine tonsils.
View Article and Find Full Text PDFIntroduction: Obstructive sleep apnea (OSA) is now a more common indication for tonsillectomy than recurrent tonsillitis (RT) [1,2]. Few studies have addressed possible differences in pathogenesis between these two conditions. Children with RT and OSA are often being treated in the community with multiple courses of antibiotics before surgery.
View Article and Find Full Text PDFMany marine sponges contain dense and diverse communities of associated microorganisms. Members of the 'sponge-associated unclassified lineage' (SAUL) are frequently recorded from sponges, yet little is known about these bacteria. Here we investigated the distribution and phylogenetic status of SAUL.
View Article and Find Full Text PDFMarine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales.
View Article and Find Full Text PDFMarine sponges host stable and species-specific microbial symbionts that are thought to be acquired and maintained by the host through a combination of vertical transmission and filtration from the surrounding seawater. To assess whether the microbial symbionts also actively contribute to the establishment of these symbioses, we performed in situ experiments on Orpheus Island, Great Barrier Reef, to quantify the chemotactic responses of natural populations of seawater microorganisms towards cellular extracts of the reef sponge Rhopaloeides odorabile. Flow cytometry analysis revealed significant levels of microbial chemotaxis towards R.
View Article and Find Full Text PDFThe study of complex microbial communities poses unique conceptual and analytical challenges, with microbial species potentially numbering in the thousands. With transient or allochthonous microorganisms often adding to this complexity, a 'core' microbiota approach, focusing only on the stable and permanent members of the community, is becoming increasingly popular. Given the various ways of defining a core microbiota, it is prudent to examine whether the definition of the core impacts upon the results obtained.
View Article and Find Full Text PDFSponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host-microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans.
View Article and Find Full Text PDF