Publications by authors named "Carmen Arena"

Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.

View Article and Find Full Text PDF

Stress modifiers are recognized as biostimulants providing beneficial effects on various plant species. However, the specific potential of modulators such as melatonin, chitosan, humic acid, and selenium in enhancing the resistance of ajwain ( L.) plants to water scarcity remains an open question.

View Article and Find Full Text PDF

Background: is a canopy-forming brown macroalga that thrives in the intertidal and subtidal habitats of the warm-temperate Mediterranean Sea, which is particularly exposed to environmental changes due to its peculiar geographical location and exposure to both global and local stressors. Testing whether this species is featured by specific functional, eco-physiological and biochemical traits allowing an efficient use of habitat resources and adaptation to environmental stress, and whether this potential might change with population growth, is essential for predicting the performance of the algae under different environmental abiotic variables (, temperature, nutrient availability, light) and biotic interactions (such as grazing).

Methods: Young (juveniles) and adult thalli of were sampled in the winter season from the Venice Lagoon, Italy, featured by high environmental changes (temperature, salinity) and analyzed for thallus dry matter content (TDMC), photosynthetic activity, photosynthetic pigment and protein content, and antioxidant capacity to assess if thallus age may be considered a significant driver in determining the ecological responses of this species to environmental changes.

View Article and Find Full Text PDF

Cold stress represents one of the major constraints for agricultural systems and crops productivity, inducing a wide range of negative effects. Particularly, long-term cold stress affects lipid metabolism, modifying the lipids/proteins ratio, the levels of phospholipids and glycolipids, and increasing lipids' unsaturation in bio-membranes. Glucose-6-phosphate dehydrogenase (G6PDH) reported prominent roles as NADPH suppliers in response to oxidative perturbations.

View Article and Find Full Text PDF

To investigate the influence of stress modulators on the adaptive physiological responses and biomass traits of oregano under water stress conditions, a two-year (2018 and 2019) randomized complete block-designed factorial research was performed. In this study, oregano plants were treated with five stress modulators levels (CHN: chitosan, AMA: amino acids, SEW: seaweed, ASA: ascorbic acid, SAA: salicylic acid, and CON: control) at three levels of irrigation regimes (Irr40 (40), Irr60 (60) and Irr75 (75) % field capacity). The effects of water shortage and biostimulant application were evaluated on total dry weight (TDW), relative water content (RWC), essential oil production, chlorophyll, nutrient (N, K, and P), proline, total soluble sugar, polyphenol and flavonoid content, and activity of antioxidant enzymes.

View Article and Find Full Text PDF

Xanthoria parietina survivability in Mars-like conditions was supported by water-lysis efficiency recovery and antioxidant content balancing with ROS production after 30 days of exposure. Xanthoria parietina (L.) Th.

View Article and Find Full Text PDF

Plants are an inexhaustible source of bioactive compounds beneficial for contrasting oxidative stress, leading to many degenerative pathologies. L. subsp.

View Article and Find Full Text PDF

Seawater warming and marine heatwaves (MHWs) have a major role on the fragmentation and loss of coastal marine habitats. Understanding the resilience and potential for adaptation of marine habitat forming species to ocean warming becomes pivotal for predicting future changes, improving present conservation and restoration strategies. In this study, a thermo-tolerance experiment was conducted to investigate the physiological effects of short vs long MHWs occurring at different timing on recruits of Gongolaria barbata, a canopy-forming species widespread in the Mediterranean Sea.

View Article and Find Full Text PDF

Phlegrean mandarin fruits are already known for health-promoting properties due to the high concentration of phytochemicals in peel, pulp, and seed. Biotic and abiotic factors, including light, may modulate their biosynthesis, metabolism, and accumulation. In this context, light-emitting diodes (LED) have recently been applied to control nutritional traits, ripening process, senescence, fruit shelf-life, and pathogenic microbial spoilage of fruits.

View Article and Find Full Text PDF

The effects of the irrigation regime and different fertilizer sources on the eco-physiological responses and yield characteristics of dragon's head were explored in a factorial experiment based on a randomized complete block design with 12 treatments and 3 replications in the 2019 growing season. The treatments included six different fertilizer sources (animal manure, vermicompost, poultry manure, biofertilizer, chemical fertilizer, and control) and two irrigation regimes (rainfed and supplemental irrigation). The results indicated the positive effects of supplementary irrigation and the application of vermicompost, poultry manure, and animal manure by increasing the absorption of nutrients (phosphorus and potassium) and improving relative water contents, chlorophyll and carotenoid contents, and the fixed oil percentage of dragon's head.

View Article and Find Full Text PDF

The consumption of fresh tomatoes and processed tomato products is widespread in the Mediterranean diet. This fruit is a valuable source of antioxidants and plays an important role in preventing oxidative stress. This study aimed to investigate the content of antioxidants and measure the total antioxidant capacity (ABTS and DPPH assays) in the peel, pulp, and seed fractions of six tomato cultivars.

View Article and Find Full Text PDF

In this study, the combined effect of plant growth under different light quality and the application of plant-growth-promoting microbes (PGPM) was considered on spinach ( L.) to assess the influence of these factors on the photosynthetic performance. To pursue this goal, spinach plants were grown in a growth chamber at two different light quality regimes, full-spectrum white light (W) and red-blue light (RB), with (I) or without (NI) PGPM-based inoculants.

View Article and Find Full Text PDF

In L., vernalization of propagation material is a common practice for the production scheduling of cut flowers, however little is known about the plant physiology and metabolism of this species as affected by cold treatments. We investigated the influence of two hybrids, MBO and MDR, and three preparation procedures of tuberous roots, only rehydration (control, C), and rehydration plus vernalization at 3.

View Article and Find Full Text PDF

are unconventional green algae composed of multinucleated, single siphonous cells. The species of are acquiring major scientific interest for both their invasion in the Mediterranean ecological niche and for the production of valuable natural metabolites. Furthermore, the abilities of spp.

View Article and Find Full Text PDF

For deep space exploration, radiation effects on astronauts, and on items fundamental for life support systems, must be kept under a pre-agreed threshold to avoid detrimental outcomes. Therefore, it is fundamental to achieve a deep knowledge on the radiation spatial and temporal variability in the different mission scenarios as well as on the responses of different organisms to space-relevant radiation. In this paper, we first consider the radiation issue for space exploration from a physics point of view by giving an overview of the topics related to the spatial and temporal variability of space radiation, as well as on measurement and simulation of irradiation, then we focus on biological issues converging the attention on plants as one of the fundamental components of Bioregenerative Life Support Systems (BLSS).

View Article and Find Full Text PDF

Drought stress is one of the most severe abiotic stresses affecting soil fertility and plant health, and due to climate change, it is destined to increase even further, becoming a serious threat to crop production. An efficient, eco-friendly alternative is the use of plant growth-promoting bacteria (PGPB), which can promote plant fitness through direct and indirect approaches, protecting plants from biotic and abiotic stresses. The present study aims to identify bacterial consortia to promote L.

View Article and Find Full Text PDF

Plants are able to acclimate to environmental constraints through functional modifications that may also occur in tissues that are not directly exposed to stress. This process is termed "systemic acquired acclimation." The present study aims to evaluate the involvement of PolyADP-ribose) polymerase (PARP) protein in the acclimation process to high light (HL) stress in plants.

View Article and Find Full Text PDF

L. is a crop selected for cultivation in Space for its nutritional properties. However, exposure to ionizing radiation (IR) can alter plant photosynthetic performance and phytochemical production in the extraterrestrial environment.

View Article and Find Full Text PDF

Light quality plays an essential role in setting plant structural and functional traits, including antioxidant compounds. This paper aimed to assess how manipulating the light spectrum during growth may regulate the photosynthetic activity and fruit bioactive compound synthesis in L. cv.

View Article and Find Full Text PDF

The increase in severe drought events due to climate change in the areas traditionally suitable for viticulture is enhancing the need to understand how grapevines regulate their photosynthetic metabolism in order to forecast specific cultivar adaptive responses to the changing environment. This study aims at evaluating the association between leaf anatomical traits and eco-physiological adjustments of the 'Falanghina' grapevine under different microclimatic conditions at four sites in southern Italy. Sites were characterized by different pedoclimatic conditions but, as much as possible, were similar for plant material and cultivation management.

View Article and Find Full Text PDF

In this work, we assess the potential of waste products of Phlegrean mandarin ( Blanco), namely seeds and peel, to be reutilized as a source of bioactive compounds beneficial for the human diet. Starting from the evidence that the by-products of this specific cultivar are the most powerful sources of antioxidants compared to pulp, we have investigated if and how the bioactive compounds in peel and seeds may be affected by fruit ripening. Three stages of fruit ripening have been considered in our study: unripe fruits = UF, semi-ripe fruits = SRF, ripe fruits = RF.

View Article and Find Full Text PDF

Surface mining is a critical anthropogenic activity that significantly alters the ecosystem. Revegetation practices are largely utilized to compensate for these detrimental impacts of surface mining. In this study, we investigated the effects of five water (W) regimes [W: 40%, W: 48%, W: 60%, W: 72%, and W: 80% of field capacity (FC)], five nitrogen (N) (N: 0, N: 24, N: 60, N: 96, and N: 120 mg kg soil), and five phosphorus (P) fertilizer doses (P: 0, P: 36, P: 90, P: 144, and P: 180 mg kg soil) on morpho-physiological and biochemical parameters of plants to assess the capability of this species to be used for restoration purposes.

View Article and Find Full Text PDF

The realization of manned missions for space exploration requires the development of Bioregenerative Life Support Systems (BLSSs) to make human colonies self-sufficient in terms of resources. Indeed, in these systems, plants contribute to resource regeneration and food production. However, the cultivation of plants in space is influenced by ionizing radiation which can have positive, null, or negative effects on plant growth depending on intrinsic and environmental/cultivation factors.

View Article and Find Full Text PDF

This study evaluated if specific light quality (LQ) regimes (white fluorescent, FL; full-spectrum, FS; red-blue, RB) during plant growth modified morphological and photosynthetic traits of L. 'Microtom' plants irradiated at the dry seed stage with 25 Gy Ca ions (IR). The irradiation reduced plant size while it increased leaf dry matter content (LDMC) and relative water content (RWC) compared to the control.

View Article and Find Full Text PDF