Breast cancer remains a challenging medical issue and is a high priority for biomedical research despite significant advancements in cancer research and therapy. The current study aims to determine the anticancer activity of a group of imidazole-pyridine-based scaffolds against a variety of breast cancer cell lines differing in their receptor expression (estrogen receptor (ER), progesterone receptor (PR), and HER-2). A series of 10 molecules (coded -) were synthesized through multicomponent and alkylation reactions.
View Article and Find Full Text PDFAn overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles.
View Article and Find Full Text PDFThe bioconversion of agri-food waste into high-value products is gaining growing interest worldwide. Orange peel waste (OPW) is the main by-product of orange juice production and contains high levels of moisture and carbohydrates. In this study, the orange waste extract (OWE) obtained through acid hydrolysis of OPW was used as a substrate in the cultivation of the marine microalgae .
View Article and Find Full Text PDFThe effective administration of medication has advanced over decades, but the medical community still faces significant demand. Burst release and inadequate assimilation are major drawbacks that affect wound healing efficiency, leading to therapy failure. The widespread application of polymers in biomedical research is significant.
View Article and Find Full Text PDFConventional drug delivery has its share of shortcomings, especially its rapid drug release with a relatively short duration of therapeutic drug concentrations, even in topical applications. Prolonged drug release can be effectively achieved by modifying the carrier in a drug delivery system. Among the several candidates for carriers studied over the years, poly (ether ether ketone), a biocompatible thermoplastic, was chosen as a suitable carrier.
View Article and Find Full Text PDFIn the current investigation, fifteen novel imidazole-pyridine-based molecules were synthesized and tested against cell lines of the lung (H1299) and colon (HCT116) adenocarcinomas by proliferation assay. The results demonstrated that compounds 5a, 5d, 5e, and 5f were the most active (IC<30 µM). Based on recent literature and the current results, the glycogen synthase kinase-3β (GSK-3β) protein was investigated in-silico as a possible target.
View Article and Find Full Text PDFImmature fruits from Punica granatum L. thinning are a neglected side product of pomegranate production with cumbersome disposal costs for farmers. To explore value potential of immature fruits from pomegranate 'Wonderful' cultivars, the compositional landscapes and antitumorigenic activities of pomegranate extracts from two different stages of maturation were assessed.
View Article and Find Full Text PDFHypothesis: Iron oxide and other ferrite nanoparticles have not yet found widespread application in the medical field since the translation process faces several big hurdles. The incomplete knowledge of the interactions between nanoparticles and living organisms is an unfavorable factor. This complex subject should be made simpler by synthesizing magnetic nanoparticles with good physical (relaxivity) and chemical (colloidal stability, anti-fouling) properties and no biological activity (no immune-related effects, minimal internalization, fast clearance).
View Article and Find Full Text PDFNanoparticles (NPs) have received much attention in recent years for their diverse potential biomedical applications. However, the synthesis of NPs with desired biodistribution and pharmacokinetics is still a major challenge, with NP size and surface chemistry being the main factors determining the behavior of NPs in vivo. Here we report on the surface chemistry and in vitro cellular uptake of magnetic iron oxide NPs coated with zwitterionic dopamine sulfonate (ZDS).
View Article and Find Full Text PDFDefective apoptosis is a hallmark of the progression of B chronic lymphocytic leukaemia (B-CLL). Smac-mimetics have been shown to induce apoptosis in several tumours. We describe the in vitro pro-apoptotic activity and regulation of the molecular pathway induced by new Smac-mimetics in B-CLL.
View Article and Find Full Text PDFLong-term colloidal stability of magnetic iron oxide nanoparticles (NPs) is an important goal that has not yet been fully achieved. To make an advance in our understanding of the colloidal stability of iron oxide NPs in aqueous media, we prepared NPs comprising a monodisperse (13 nm) iron oxide core coated with a PEG-based (PEG: polyethyleneglycol) surfactant. This consists of a methoxy-terminated PEG chain (MW = 5000 Da) bearing four catechol groups via a diethylenetriamine linker.
View Article and Find Full Text PDFGenetic alterations enhancing cell survival and suppressing apoptosis are hallmarks of cancer that significantly reduce the efficacy of chemotherapy or radiotherapy. The Inhibitor of Apoptosis Protein (IAP) family hosts conserved proteins in the apoptotic pathway whose over-expression, frequently found in tumours, potentiates survival and resistance to anticancer agents. In humans, IAPs comprise eight members hosting one or more structural Baculoviral IAP Repeat (BIR) domains.
View Article and Find Full Text PDFNovel pro-apoptotic, homodimeric and heterodimeric Smac mimetics/IAPs inhibitors connected through head-head (8), tail-tail (9) or head-tail linkers (10), were biologically and structurally characterized. In vitro characterization (binding to BIR3 and linker-BIR2-BIR3 domains from XIAP and cIAP1, cytotoxicity assays) identified early leads from each dimer family. Computational models and structural studies (crystallography, NMR, gel filtration) partially rationalized the observed properties for each dimer class.
View Article and Find Full Text PDFNovel pro-apoptotic, homo- and heterodimeric Smac mimetics/IAPs inhibitors based on the N-AVPI-like 4-substituted 1-aza-2-oxobicyclo[5.3.0]decane scaffold were prepared from monomeric structures connected through a head-head (8), tail-tail (9) or head-tail (10) linker.
View Article and Find Full Text PDFThe Inhibitor of Apoptosis Proteins (IAPs) are important regulators of programmed cell death. XIAP is the most potent among them and is over-expressed in several hematological malignancies. Its activity is endogenously antagonized by SMAC/DIABLO, and also by small molecules mimicking Smac that can induce apoptosis in tumor cells.
View Article and Find Full Text PDFNovel proapoptotic Smac mimics/IAPs inhibitors have been designed, synthesized and characterized. Computational models and structural studies (crystallography, NMR) have elucidated the SAR of this class of inhibitors, and have permitted further optimization of their properties. In vitro characterization (XIAP BIR3 and linker-BIR2-BIR3 binding, cytotox assays, early ADMET profiling) of the compounds has been performed, identifying one lead for further in vitro and in vivo evaluation.
View Article and Find Full Text PDFXIAP is an apoptotic regulator protein that binds to the effector caspases -3 and -7 through its BIR2 domain, and to initiator caspase-9 through its BIR3 domain. Molecular docking studies suggested that Smac-DIABLO may antagonize XIAP by concurrently targeting both BIR2 and BIR3 domains; on this basis bivalent Smac-mimetic compounds have been proposed and characterized. Here, we report the X-ray crystal structure of XIAP-BIR3 domain in complex with a two-headed compound (compound 3) with improved efficacy relative to its monomeric form.
View Article and Find Full Text PDFThe X-linked inhibitor of apoptosis protein (XIAP) is overexpressed in several malignant cells where it prevents apoptosis by binding to, and blocking, the activation of caspase-3, -7, and -9. Human XIAP (479 residues) is composed of three tandem-repeated baculoviral IAP repeat (BIR) domains (BIR1-3), and by a C-terminal RING domain. Smac-DIABLO [second mitochondria-derived activator of caspases (Smac)-direct IAP binding protein with low pI (DIABLO)], the natural antagonist of XIAP, binds through its N-terminal sequence AVPI to the same surface groove, in the BIR domains, that binds caspases.
View Article and Find Full Text PDF