Publications by authors named "Carmelle V Remillard"

The symptomology is overlapping for respiratory infections due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), influenza A/B viruses, and respiratory syncytial virus (RSV). Accurate detection is essential for proper medical management decisions. This study evaluated the clinical performance of the Panther Fusion SARS-CoV-2/Flu A/B/RSV assay in nasopharyngeal swab (NPS) specimens from individuals of all ages with signs and symptoms of respiratory infection consistent with COVID-19, influenza, or RSV.

View Article and Find Full Text PDF

Data from a large prospective multicenter clinical validation study of a nucleic acid amplification diagnostic test for were analyzed to describe the prevalence of infection, risk factors, and disease associations in female and male patients seeking care in diverse geographic regions of the United States. Among 1,737 female and 1,563 male participants, the overall prevalence of infection was 10.3% and was significantly higher in persons ages 15 to 24 years than in persons ages 35 to 39 years (for females, 19.

View Article and Find Full Text PDF

Infectious vaginitis due to bacterial vaginosis (BV), vulvovaginal candidiasis (VVC), and accounts for a significant proportion of all gynecologic visits in the United States. A prospective multicenter clinical study was conducted to validate the performance of two new diagnostic transcription-mediated amplification nucleic acid amplification tests (NAATs) for diagnosis of BV, VVC, and trichomoniasis. Patient- and clinician-collected vaginal-swab samples obtained from women with symptoms of vaginitis were tested with the Aptima BV and Aptima vaginitis (CV/TV) assays.

View Article and Find Full Text PDF

A prospective multicenter clinical study involving subjects from 21 sites across the United States was conducted to validate the performance of a new diagnostic nucleic acid amplification test (NAAT) for the detection of Seven urogenital specimen types ( = 11,556) obtained from 1,778 females, aged 15 to 74 years, and 1,583 males, aged 16 to 82 years, were tested with the Aptima assay, an investigational transcription-mediated amplification (TMA) NAAT for the detection of 16S rRNA. Infected status for enrolled subjects was established using results obtained from testing either self-collected vaginal swab or clinician-collected male urethral swab specimens with a composite reference method consisting of three transcription-mediated amplification NAATs targeting unique regions of 16S or 23S rRNA. prevalence was 10.

View Article and Find Full Text PDF

Fenfluramine is prescribed either alone or in combination with phentermine as part of Fen-Phen, an anti-obesity medication. Fenfluramine was withdrawn from the US market in 1997 due to reports of heart valvular disease, pulmonary arterial hypertension, and cardiac fibrosis. Particularly, idiopathic pulmonary arterial hypertension (IPAH), previously referred to as primary pulmonary hypertension (PPH), was found to be associated with the use of Fen-Phen, fenfluramine, and fenfluramine derivatives.

View Article and Find Full Text PDF

The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation-contraction coupling in pulmonary artery smooth muscle cells (PASMC).

View Article and Find Full Text PDF

Oct-4 is a transcription factor considered to be one of the defining pluripotency markers in embryonic stem cells. Its expression has also been demonstrated in adult stem cells, tumorigenic cells, and, most recently and controversially, in somatic cells. Oct-4 pseudogenes also contribute to carcinogenesis.

View Article and Find Full Text PDF

Background: Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the development of idiopathic pulmonary arterial hypertension (IPAH), whereas a rise in cytosolic Ca2+ concentration triggers PASMC contraction and stimulates PASMC proliferation. Recently, we demonstrated that upregulation of the TRPC6 channel contributes to proliferation of PASMCs isolated from IPAH patients. This study sought to identify single-nucleotide polymorphisms (SNPs) in the TRPC6 gene promoter that are associated with IPAH and have functional significance in regulating TRPC6 activity in PASMCs.

View Article and Find Full Text PDF

Thrombin is a procoagulant inflammatory agonist that can disrupt the endothelium-lumen barrier in the lung by causing contraction of endothelial cells and promote pulmonary cell proliferation. Both contraction and proliferation require increases in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)). In this study, we compared the effect of thrombin on Ca(2+) signaling in human pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells.

View Article and Find Full Text PDF

A member of the TNF receptor family, the p75 neurotrophin receptor (p75(NTR)) has been previously shown to play a role in the regulation of fibrin deposition in the lung. However, the role of p75(NTR) in the regulation of pulmonary vascular tone in the lung is unknown. In the present study, we evaluated the expression of p75(NTR) in mouse pulmonary arteries and the putative role of p75(NTR) in modulating pulmonary vascular tone and agonist responsiveness using wild-type (WT) and p75(NTR) knockout (p75(-/-)) mice.

View Article and Find Full Text PDF

Sustained pulmonary vasoconstriction contributes to the elevated pulmonary vascular resistance observed in pulmonary arterial hypertension. A rise in cytosolic Ca(2 +) in pulmonary artery smooth muscle cells (PASMCs) is major trigger for pulmonary vasoconstriction. One family of drugs currently being pursued as a potential treatment for pulmonary hypertension are the statins, which act by depleting cholesterol and reducing the number of caveolae.

View Article and Find Full Text PDF

In recent years, transgenic mouse models have been developed to examine the underlying cellular and molecular mechanisms of lung disease and pulmonary vascular disease, such as asthma, pulmonary thromboembolic disease, and pulmonary hypertension. However, there has not been systematic characterization of the basic physiological pulmonary vascular reactivity in normal and transgenic mice. This represents an intellectual "gap", since it is important to characterize basic murine pulmonary vascular reactivity in response to various contractile and relaxant factors to which the pulmonary vasculature is exposed under physiological conditions.

View Article and Find Full Text PDF

Hypoxic pulmonary vasoconstriction is caused by a rise in cytosolic Ca(2+) ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) via multiple mechanisms. PASMC consist of heterogeneous phenotypes defined by contractility, proliferation, and apoptosis as well as by differences in expression and function of various genes. In rat PASMC, hypoxia-mediated decrease in voltage-gated K(+) (Kv) currents (I(K(V))) and increase in [Ca(2+)](cyt) were not uniformly distributed in all PASMC tested.

View Article and Find Full Text PDF

Pulmonary and systemic arterial hypertension are associated with profound alterations in Ca(2+) homeostasis and smooth muscle cell proliferation. A novel class of non-selective cation channels, the transient receptor potential (TRP) channels, have emerged at the forefront of research into hypertensive disease states. TRP channels are identified as molecular correlates for receptor-operated and store-operated cation channels in the vasculature.

View Article and Find Full Text PDF

The pore-forming alpha-subunit, Kv1.5, forms functional voltage-gated K(+) (Kv) channels in human pulmonary artery smooth muscle cells (PASMC) and plays an important role in regulating membrane potential, vascular tone, and PASMC proliferation and apoptosis. Inhibited Kv channel expression and function have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH).

View Article and Find Full Text PDF

Pulmonary vascular remodeling due to overgrowth of pulmonary artery smooth muscle cells (PASMC) is a major cause for the elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Increased cytosolic Ca(2+) concentration, resulting from enhanced capacitative Ca(2+) entry (CCE) and upregulated transient receptor potential (TRP) channel expression, is involved in stimulating PASMC proliferation. The current study was designed to determine the impact of cAMP, a second messenger that we hypothesized would blunt aspects of PASMC activity, as a possible contributor to IPAH pathophysiology.

View Article and Find Full Text PDF

Recent efforts have seen major advances in elucidating the mechanisms underlying pulmonary arterial hypertension. However, chronic thromboembolic pulmonary hypertension (CTEPH) often has been excluded from these studies. Consequently, whereas the clinical, radiographic, and hemodynamic characteristics of CTEPH have been well described, there remains a deficit in our understanding of the cellular, molecular, and genetic mechanisms underlying CTEPH.

View Article and Find Full Text PDF

Transient receptor potential (TRP) genes represent a novel class of genes that are generally believed to encode for nonselective cation channels. A subfamily of TRP channels, canonical TRP (TRPC), which are highly permeable to Ca2+ (and Na+), co-assembles with each other to form functional store- and receptor-operated Ca2+ channels. TRPC mRNA and protein have been identified in pulmonary arterial smooth muscle and endothelial cells.

View Article and Find Full Text PDF

Caveolae formation has raised the concept of energy efficiency to new heights. The ultimate purpose of caveolae formation is to colocalize signaling proteins with membrane microdomains in order to facilitate their interaction and improve signal transduction efficiency. Although we know that the main structural protein of caveolae is caveolin, how caveolin interacts with membrane proteins to facilitate their integration into lipid raft domains is unclear.

View Article and Find Full Text PDF

Activity of voltage-gated K(+) (K(V)) channels in pulmonary artery smooth muscle cells (PASMC) plays an important role in control of apoptosis and proliferation in addition to regulating membrane potential and pulmonary vascular tone. Bone morphogenetic proteins (BMPs) inhibit proliferation and induce apoptosis in normal human PASMC, whereas dysfunctional BMP signaling and downregulated K(V) channels are involved in pulmonary vascular medial hypertrophy associated with pulmonary hypertension. This study evaluated the effect of BMP-2 on K(V) channel function and expression in normal human PASMC.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) inhibit proliferation and induce apoptosis in pulmonary artery smooth muscle cells (PASMCs) from normal subjects. Dysfunction of BMP signaling due to mutations in and/or down-regulation of BMP receptors has been implicated in idiopathic pulmonary arterial hypertension (IPAH). The authors examined whether BMP differentially regulates gene expression in PASMCs from normal subjects and IPAH patients using the Affymetrix microarray analysis.

View Article and Find Full Text PDF

Acute hypoxia causes pulmonary vasoconstriction in part by inhibiting voltage-gated K(+) (Kv) channel activity in pulmonary artery smooth muscle cells (PASMC). The hypoxia-mediated decrease in Kv currents [I(K(V))] is selective to PASMC; hypoxia has little effect on I(K(V)) in mesenteric artery smooth muscle cells (MASMC). Functional Kv channels are homo- and/or heterotetramers of pore-forming alpha-subunits and regulatory beta-subunits.

View Article and Find Full Text PDF

Global alveolar hypoxia, as experienced at high-altitude living, has a serious impact on vascular physiology, particularly on the pulmonary vasculature. The effects of sustained hypoxia on pulmonary arteries include sustained vasoconstriction and enhanced medial hypertrophy. As the major component of the vascular media, pulmonary artery smooth muscle cells (PASMC) are the main effectors of the physiological response(s) induced during or following hypoxic exposure.

View Article and Find Full Text PDF

Electrical excitability, which plays an important role in excitation-contraction coupling in the pulmonary vasculature, is regulated by transmembrane ion flux in pulmonary artery smooth muscle cells (PASMC). This study aimed to characterize the electrophysiological properties and molecular identities of voltage-gated Na(+) channels in cultured human PASMC. We recorded tetrodotoxin (TTX) sensitive and rapidly inactivating Na(+) currents with properties similar to those described in cardiac myocytes.

View Article and Find Full Text PDF