Background: The circadian clock is a central driver of many biological and behavioral processes, regulating the levels of many genes and proteins, termed clock controlled genes and proteins (CCGs/CCPs), to impart biological timing at the molecular level. While transcriptomic and proteomic data has been analyzed to find potential CCGs and CCPs, multi-omic modeling of circadian data, which has the potential to enhance the understanding of circadian control of biological timing, remains relatively rare due to several methodological hurdles. To address this gap, a dual-approach co-expression analysis framework (D-CAF) was created to perform co-expression analysis that is robust to Gaussian noise perturbations on time-series measurements of both transcripts and proteins.
View Article and Find Full Text PDFFibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands.
View Article and Find Full Text PDFFibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands.
View Article and Find Full Text PDF