Publications by authors named "Carmai Seto"

Background: The objective of this study was to evaluate the sensitivity requirement for LC-MS/MS as an analytical tool to characterize metabolites in plasma and urine at microdoses in rats and to investigate proportionality of metabolite exposure from a microdose of 1.67 µg/kg to a high dose of 5000 µg/kg for atorvastatin, ofloxacin, omeprazole and tamoxifen.

Results: Only the glucuronide metabolite of ofloxacin, the hydroxylation metabolite of omeprazole and the hydration metabolite of tamoxifen were characterized in rat plasma at microdose by LC-MS/MS.

View Article and Find Full Text PDF

MK-0674 is a potent and selective cathepsin K inhibitor from the same structural class as odanacatib with a comparable inhibitory potency profile against Cat K. It is orally bioavailable and exhibits long half-life in pre-clinical species. In vivo studies using deuterated MK-0674 show stereoselective epimerization of the alcohol stereocenter via an oxidation/reduction cycle.

View Article and Find Full Text PDF

Purpose: To evaluate the sensitivity requirement for LC-MS/MS as an analytical tool to support human microdosing study with sub-pharmacological dose, investigate proportionality of pharmacokinetics from the microdose to therapeutic human equivalent doses in rats and characterize circulating metabolites in rats administered with the microdose.

Materials And Methods: Five drugs of antipyrine, metoprolol, carbamazepine, digoxin and atenolol were administered orally to male Sprague-Dawley rats at 0.167, 1.

View Article and Find Full Text PDF

Odanacatib is a potent, selective, and neutral cathepsin K inhibitor which was developed to address the metabolic liabilities of the Cat K inhibitor L-873724. Substituting P1 and modifying the P2 side chain led to a metabolically robust inhibitor with a long half-life in preclinical species. Odanacatib was more selective in whole cell assays than the published Cat K inhibitors balicatib and relacatib.

View Article and Find Full Text PDF
Article Synopsis
  • A group of DP1 receptor antagonists from an indole series was found to covalently bind to proteins in liver microsomes from both rats and humans.
  • Research indicated that strong electron-withdrawing groups could prevent this covalent binding, leading to the development of a particular compound, MK-0524.
  • Further tests in liver cells and live subjects revealed that the formation of a metabolite called acyl-glucuronide did not result in covalent binding to proteins.
View Article and Find Full Text PDF

The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats.

View Article and Find Full Text PDF

Metabolites of the potent DP antagonist, MK-0524, were generated using in vitro systems including hepatic microsomes and hepatocytes. Four metabolites (two hydroxylated diastereomers, a ketone and an acyl glucuronide) were characterized by LC-MS/MS and 1H NMR. Larger quantities of these metabolites were prepared by either organic synthesis or biosynthetically to be used as standards in other studies.

View Article and Find Full Text PDF

A new series of nonpeptidic cathepsin K inhibitors that are based on a beta-substituted cyclohexanecarboxamide motif has been developed. Lead optimization yielded compounds with sub-nanomolar potency and exceptional selectivity profiles against cathepsins B, L, and S. Use of fluorine atoms to block metabolism on the cyclohexyl ring led to compounds with excellent pharmacokinetic properties.

View Article and Find Full Text PDF

Protein covalent labeling can be an undesirable property of compounds being studied in drug discovery programs. Identifying such compounds relies on the use of radiolabeled material, which requires an investment in time and resources not typically expended until later in the discovery process. We describe the detection of covalent adducts to cytochrome P450 3A4, the most abundant and important P450 from a human and drug discovery viewpoint, using liquid chromatography mass spectrometry.

View Article and Find Full Text PDF

Standard approaches to development of liquid chromatography-mass spectrometry (LC-MS) methods, either ion-pairing or reversed-phase liquid chromatography, have been through trial and error or intentional variation of experimental factors. These approaches to method optimization fail to take into account interactions between experimental factors and therefore the results may not be optimal for the combination of experimental factors. Another approach to optimization is through the use of chemometrics.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh2th2beaa6jkb1jduq1o5gqb31f2d307): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once