Publications by authors named "Carly S Hanson"

Molybdenum dithiocarbamates (MDTCs) are indispensable lubricant additives. Although their role as antiwear agents is well established, they have also been attributed antioxidant properties that are not understood. MDTCs do not inhibit autoxidation, but they markedly enhance the capacity of diphenylamines (DPAs)─ubiquitous radical-trapping antioxidants (RTAs)─to do so.

View Article and Find Full Text PDF

Lipid peroxidation (LPO) is associated with a variety of pathologies and drives a form of regulated necrosis called ferroptosis. There is much interest in small-molecule inhibitors of LPO as potential leads for therapeutic development for neurodegeneration, stroke, and acute organ failure, but this has been hampered by the lack of a universal high-throughput assay that can identify and assess candidates. Herein, we describe the development and validation of such an approach.

View Article and Find Full Text PDF

The coordination of a carbonyl to a Lewis acid represents the first step in a wide range of catalytic transformations. In many reactions it is necessary for the Lewis acid to discriminate between starting material and product, and as a result, how these structures behave in solution must be characterized. Herein, we report the application of computational modeling to calculate properties of the solution interactions of acetone and benzaldehyde with FeCl.

View Article and Find Full Text PDF

Lewis acid-activation of carbonyl-containing substrates is a fundamental basis for facilitating transformations in organic chemistry. Historically, characterization of these interactions has been limited to models equivalent to stoichiometric reactions. Here, we report a method utilizing in situ infrared spectroscopy to probe the solution interactions between Lewis acids and carbonyls under synthetically relevant conditions.

View Article and Find Full Text PDF

Lewis acid-activation of carbonyl-containing substrates is broadly utilized in organic synthesis. In order to facilitate the development of novel reaction pathways and understand existing methods, it is necessary to determine the solution interactions between Lewis acids and Lewis bases. Herein, we report the application of in situ infrared spectroscopy and solution conductivity toward the identification of the solution structures formed when a range of carbonyl compounds are combined with catalytically active metal halide Lewis acids under synthetically relevant conditions.

View Article and Find Full Text PDF

Iron(III)-catalyzed carbonyl-olefin ring-closing metathesis employs reactivity not typically observed in Lewis acid-catalyzed reactions. In converting a ketone with a pendant olefin into a cycloalkene and a simple carbonyl byproduct, the reaction requires the Lewis acid catalyst to differentiate between the carbonyl of the substrate and that of the byproduct. It is necessary to determine how this solution interaction imparts the desired reactivity to best employ this method.

View Article and Find Full Text PDF