Publications by authors named "Carly Neal"

Natural killer (NK) cells are innate lymphoid cells that protect a host from viral infections and malignancies. MicroRNA-146a (miR-146a) is an important regulator of immune function that is highly expressed in NK cells and is further upregulated during murine cytomegalovirus (MCMV) infection. Here we utilized mice with a global targeted deletion of miR-146a to understand its impact on the innate immune responses to MCMV infection.

View Article and Find Full Text PDF
Article Synopsis
  • Head and neck squamous cell carcinoma (HNSCC) is challenging to treat, especially with PD-1 blockade therapy, prompting researchers to explore enhancing natural killer (NK) cell therapies.
  • The study generated memory-like (ML) NK and conventional (c)NK cells, assessing their effectiveness in attacking HNSCC cells, particularly when combined with cetuximab or engineered with an anti-EphA2 CAR.
  • Results showed that ML NK cells were significantly more effective at killing HNSCC cells and that their performance improved further with cetuximab, supporting the potential of these combined therapies in clinical trials.
View Article and Find Full Text PDF

Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18.

View Article and Find Full Text PDF
Article Synopsis
  • Pediatric and young adult patients with relapsed acute myeloid leukemia (AML) after stem cell transplant usually have a very poor outlook, and current treatments like standard chemotherapy and donor lymphocyte infusions are not very effective.
  • A phase 1 trial treated 9 patients with memory-like natural killer (ML NK) cells that were generated from their original stem cell donors, showing promising results with 4 out of 8 evaluable patients achieving complete remission after two weeks.
  • The study found that these ML NK cells can expand and persist in the body with strong anti-leukemia responses, indicating they could be an effective new immunotherapy option for relapsed AML without significant toxicity.
View Article and Find Full Text PDF
Article Synopsis
  • Natural killer (NK) cells show promise as a cancer treatment but face issues such as persistence and tumor recognition; priming them with specific interleukins (rhIL-12, rhIL-15, rhIL-18) enhances their effectiveness.
  • A new platform using inert tissue factor scaffolds was created to produce heteromeric fusion protein complexes, enabling scalable production of these interleukins (HCW9201) and additional CD16 engagement (HCW9207).
  • Studies show that HCW9201 improves NK cell function and memory-like characteristics, making it a potential solution for producing effective NK cells in a clinical setting for cancer therapies.
View Article and Find Full Text PDF

Purpose: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation.

Experimental Design: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays.

View Article and Find Full Text PDF

Natural killer (NK) cells are an emerging cancer cellular therapy and potent mediators of antitumor immunity. Cytokine-induced memory-like (ML) NK cellular therapy is safe and induces remissions in patients with acute myeloid leukemia (AML). However, the dynamic changes in phenotype that occur after NK-cell transfer that affect patient outcomes remain unclear.

View Article and Find Full Text PDF

Natural killer (NK) cells are a promising cellular immunotherapy for cancer. Cytokine-induced memory-like (ML) NK cells differentiate after activation with interleukin-12 (IL-12), IL-15, and IL-18, exhibit potent antitumor responses, and safely induce complete remissions in patients with leukemia. However, many cancers are not fully recognized via NK cell receptors.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic innate lymphoid cells (ILCs) that mediate antiviral and antitumor responses and require the transcriptional regulator Eomesodermin (Eomes) for early development. However, the role of Eomes and its molecular program in mature NK cell biology is unclear. To address this, we develop a tamoxifen-inducible, type-1-ILC-specific (Ncr1-targeted) cre mouse and combine this with Eomes-floxed mice.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells.

View Article and Find Full Text PDF

Natural killer (NK) cells are an emerging cellular immunotherapy for patients with acute myeloid leukemia (AML); however, the best approach to maximize NK cell antileukemia potential is unclear. Cytokine-induced memory-like NK cells differentiate after a brief preactivation with interleukin-12 (IL-12), IL-15, and IL-18 and exhibit enhanced responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We hypothesized that memory-like NK cells exhibit enhanced antileukemia functionality.

View Article and Find Full Text PDF